mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
a7627cbd07
* Rename function to disable_duplicative_biases * rename also the functions in the tests... oops
257 lines
11 KiB
C++
257 lines
11 KiB
C++
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
|
/*
|
|
This is an example illustrating the use of the deep learning tools from the dlib C++
|
|
Library. I'm assuming you have already read the dnn_introduction_ex.cpp, the
|
|
dnn_introduction2_ex.cpp and the dnn_introduction3_ex.cpp examples. In this example
|
|
program we are going to show how one can train Generative Adversarial Networks (GANs). In
|
|
particular, we will train a Deep Convolutional Generative Adversarial Network (DCGAN) like
|
|
the one introduced in this paper:
|
|
"Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks"
|
|
by Alec Radford, Luke Metz, Soumith Chintala.
|
|
|
|
The main idea is that there are two neural networks training at the same time:
|
|
- the generator is in charge of generating images that look as close as possible to the
|
|
ones from the dataset.
|
|
- the discriminator will decide whether an image is fake (created by the generator) or real
|
|
(selected from the dataset).
|
|
|
|
Each training iteration alternates between training the discriminator and the generator.
|
|
We first train the discriminator with real and fake images and then use the gradient from
|
|
the discriminator to update the generator.
|
|
|
|
In this example, we are going to learn how to generate digits from the MNIST dataset, but
|
|
the same code can be run using the Fashion MNIST datset:
|
|
https://github.com/zalandoresearch/fashion-mnist
|
|
*/
|
|
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
|
|
#include <dlib/data_io.h>
|
|
#include <dlib/dnn.h>
|
|
#include <dlib/gui_widgets.h>
|
|
#include <dlib/matrix.h>
|
|
|
|
using namespace std;
|
|
using namespace dlib;
|
|
|
|
// Some helper definitions for the noise generation
|
|
const size_t noise_size = 100;
|
|
using noise_t = std::array<matrix<float, 1, 1>, noise_size>;
|
|
|
|
noise_t make_noise(dlib::rand& rnd)
|
|
{
|
|
noise_t noise;
|
|
for (auto& n : noise)
|
|
{
|
|
n = rnd.get_random_gaussian();
|
|
}
|
|
return noise;
|
|
}
|
|
|
|
// A convolution with custom padding
|
|
template<long num_filters, long kernel_size, int stride, int padding, typename SUBNET>
|
|
using conp = add_layer<con_<num_filters, kernel_size, kernel_size, stride, stride, padding, padding>, SUBNET>;
|
|
|
|
// A transposed convolution to with custom padding
|
|
template<long num_filters, long kernel_size, int stride, int padding, typename SUBNET>
|
|
using contp = add_layer<cont_<num_filters, kernel_size, kernel_size, stride, stride, padding, padding>, SUBNET>;
|
|
|
|
// The generator is made of a bunch of deconvolutional layers. Its input is a 1 x 1 x k noise
|
|
// tensor, and the output is the generated image. The loss layer does not matter for the
|
|
// training, we just stack a compatible one on top to be able to have a () operator on the
|
|
// generator.
|
|
using generator_type =
|
|
loss_binary_log_per_pixel<
|
|
sig<contp<1, 4, 2, 1,
|
|
relu<bn_con<contp<64, 4, 2, 1,
|
|
relu<bn_con<contp<128, 3, 2, 1,
|
|
relu<bn_con<contp<256, 4, 1, 0,
|
|
input<noise_t>
|
|
>>>>>>>>>>>>;
|
|
|
|
// Now, let's proceed to define the discriminator, whose role will be to decide whether an
|
|
// image is fake or not.
|
|
using discriminator_type =
|
|
loss_binary_log<
|
|
conp<1, 3, 1, 0,
|
|
leaky_relu<bn_con<conp<256, 4, 2, 1,
|
|
leaky_relu<bn_con<conp<128, 4, 2, 1,
|
|
leaky_relu<conp<64, 4, 2, 1,
|
|
input<matrix<unsigned char>>
|
|
>>>>>>>>>>;
|
|
|
|
// Some helper functions to generate and get the images from the generator
|
|
matrix<unsigned char> generate_image(generator_type& net, const noise_t& noise)
|
|
{
|
|
const matrix<float> output = net(noise);
|
|
matrix<unsigned char> image;
|
|
assign_image(image, 255 * output);
|
|
return image;
|
|
}
|
|
|
|
std::vector<matrix<unsigned char>> get_generated_images(const tensor& out)
|
|
{
|
|
std::vector<matrix<unsigned char>> images;
|
|
for (long n = 0; n < out.num_samples(); ++n)
|
|
{
|
|
matrix<float> output = image_plane(out, n);
|
|
matrix<unsigned char> image;
|
|
assign_image(image, 255 * output);
|
|
images.push_back(std::move(image));
|
|
}
|
|
return images;
|
|
}
|
|
|
|
int main(int argc, char** argv) try
|
|
{
|
|
// This example is going to run on the MNIST dataset.
|
|
if (argc != 2)
|
|
{
|
|
cout << "This example needs the MNIST dataset to run!" << endl;
|
|
cout << "You can get MNIST from http://yann.lecun.com/exdb/mnist/" << endl;
|
|
cout << "Download the 4 files that comprise the dataset, decompress them, and" << endl;
|
|
cout << "put them in a folder. Then give that folder as input to this program." << endl;
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
// MNIST is broken into two parts, a training set of 60000 images and a test set of 10000
|
|
// images. Each image is labeled so that we know what hand written digit is depicted.
|
|
// These next statements load the dataset into memory.
|
|
std::vector<matrix<unsigned char>> training_images;
|
|
std::vector<unsigned long> training_labels;
|
|
std::vector<matrix<unsigned char>> testing_images;
|
|
std::vector<unsigned long> testing_labels;
|
|
load_mnist_dataset(argv[1], training_images, training_labels, testing_images, testing_labels);
|
|
|
|
// Fix the random generator seeds for network initialization and noise
|
|
srand(1234);
|
|
dlib::rand rnd(std::rand());
|
|
|
|
// Instantiate both generator and discriminator
|
|
generator_type generator;
|
|
discriminator_type discriminator;
|
|
// setup all leaky_relu_ layers in the discriminator to have alpha = 0.2
|
|
visit_computational_layers(discriminator, [](leaky_relu_& l){ l = leaky_relu_(0.2); });
|
|
// Remove the bias learning from all bn_ inputs in both networks
|
|
disable_duplicative_biases(generator);
|
|
disable_duplicative_biases(discriminator);
|
|
// Forward random noise so that we see the tensor size at each layer
|
|
discriminator(generate_image(generator, make_noise(rnd)));
|
|
cout << "generator (" << count_parameters(generator) << " parameters)" << endl;
|
|
cout << generator << endl;
|
|
cout << "discriminator (" << count_parameters(discriminator) << " parameters)" << endl;
|
|
cout << discriminator << endl;
|
|
|
|
// The solvers for the generator and discriminator networks. In this example, we are going to
|
|
// train the networks manually, so we don't need to use a dnn_trainer. Note that the
|
|
// discriminator could be trained using a dnn_trainer, but not the generator, since its
|
|
// training process is a bit particular.
|
|
std::vector<adam> g_solvers(generator.num_computational_layers, adam(0, 0.5, 0.999));
|
|
std::vector<adam> d_solvers(discriminator.num_computational_layers, adam(0, 0.5, 0.999));
|
|
double learning_rate = 2e-4;
|
|
|
|
// Resume training from last sync file
|
|
size_t iteration = 0;
|
|
if (file_exists("dcgan_sync"))
|
|
{
|
|
deserialize("dcgan_sync") >> generator >> discriminator >> iteration;
|
|
}
|
|
|
|
const size_t minibatch_size = 64;
|
|
const std::vector<float> real_labels(minibatch_size, 1);
|
|
const std::vector<float> fake_labels(minibatch_size, -1);
|
|
dlib::image_window win;
|
|
resizable_tensor real_samples_tensor, fake_samples_tensor, noises_tensor;
|
|
running_stats<double> g_loss, d_loss;
|
|
while (iteration < 50000)
|
|
{
|
|
// Train the discriminator with real images
|
|
std::vector<matrix<unsigned char>> real_samples;
|
|
while (real_samples.size() < minibatch_size)
|
|
{
|
|
auto idx = rnd.get_random_32bit_number() % training_images.size();
|
|
real_samples.push_back(training_images[idx]);
|
|
}
|
|
// The following lines are equivalent to calling train_one_step(real_samples, real_labels)
|
|
discriminator.to_tensor(real_samples.begin(), real_samples.end(), real_samples_tensor);
|
|
d_loss.add(discriminator.compute_loss(real_samples_tensor, real_labels.begin()));
|
|
discriminator.back_propagate_error(real_samples_tensor);
|
|
discriminator.update_parameters(d_solvers, learning_rate);
|
|
|
|
// Train the discriminator with fake images
|
|
// 1. Generate some random noise
|
|
std::vector<noise_t> noises;
|
|
while (noises.size() < minibatch_size)
|
|
{
|
|
noises.push_back(make_noise(rnd));
|
|
}
|
|
// 2. Convert noises into a tensor
|
|
generator.to_tensor(noises.begin(), noises.end(), noises_tensor);
|
|
// 3. Forward the noise through the network and convert the outputs into images.
|
|
const auto fake_samples = get_generated_images(generator.forward(noises_tensor));
|
|
// 4. Finally train the discriminator. The following lines are equivalent to calling
|
|
// train_one_step(fake_samples, fake_labels)
|
|
discriminator.to_tensor(fake_samples.begin(), fake_samples.end(), fake_samples_tensor);
|
|
d_loss.add(discriminator.compute_loss(fake_samples_tensor, fake_labels.begin()));
|
|
discriminator.back_propagate_error(fake_samples_tensor);
|
|
discriminator.update_parameters(d_solvers, learning_rate);
|
|
|
|
// Train the generator
|
|
// This part is the essence of the Generative Adversarial Networks. Until now, we have
|
|
// just trained a binary classifier that the generator is not aware of. But now, the
|
|
// discriminator is going to give feedback to the generator on how it should update
|
|
// itself to generate more realistic images. The following lines perform the same
|
|
// actions as train_one_step() except for the network update part. They can also be
|
|
// seen as test_one_step() plus the error back propagation.
|
|
|
|
// Forward the fake samples and compute the loss with real labels
|
|
g_loss.add(discriminator.compute_loss(fake_samples_tensor, real_labels.begin()));
|
|
// Back propagate the error to fill the final data gradient
|
|
discriminator.back_propagate_error(fake_samples_tensor);
|
|
// Get the gradient that will tell the generator how to update itself
|
|
const tensor& d_grad = discriminator.get_final_data_gradient();
|
|
generator.back_propagate_error(noises_tensor, d_grad);
|
|
generator.update_parameters(g_solvers, learning_rate);
|
|
|
|
// At some point, we should see that the generated images start looking like samples from
|
|
// the MNIST dataset
|
|
if (++iteration % 1000 == 0)
|
|
{
|
|
serialize("dcgan_sync") << generator << discriminator << iteration;
|
|
std::cout <<
|
|
"step#: " << iteration <<
|
|
"\tdiscriminator loss: " << d_loss.mean() * 2 <<
|
|
"\tgenerator loss: " << g_loss.mean() << '\n';
|
|
win.set_image(tile_images(fake_samples));
|
|
win.set_title("DCGAN step#: " + to_string(iteration));
|
|
d_loss.clear();
|
|
g_loss.clear();
|
|
}
|
|
}
|
|
|
|
// Once the training has finished, we don't need the discriminator any more. We just keep the
|
|
// generator.
|
|
generator.clean();
|
|
serialize("dcgan_mnist.dnn") << generator;
|
|
|
|
// To test the generator, we just forward some random noise through it and visualize the
|
|
// output.
|
|
while (!win.is_closed())
|
|
{
|
|
const auto image = generate_image(generator, make_noise(rnd));
|
|
const auto real = discriminator(image) > 0;
|
|
win.set_image(image);
|
|
cout << "The discriminator thinks it's " << (real ? "real" : "fake");
|
|
cout << ". Hit enter to generate a new image";
|
|
cin.get();
|
|
}
|
|
|
|
return EXIT_SUCCESS;
|
|
}
|
|
catch(exception& e)
|
|
{
|
|
cout << e.what() << endl;
|
|
return EXIT_FAILURE;
|
|
}
|