dlib/examples/kkmeans_ex.cpp
2015-02-11 07:55:42 -05:00

155 lines
6.1 KiB
C++

// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use of the kkmeans object
and spectral_cluster() routine from the dlib C++ Library.
The kkmeans object is an implementation of a kernelized k-means clustering
algorithm. It is implemented by using the kcentroid object to represent
each center found by the usual k-means clustering algorithm.
So this object allows you to perform non-linear clustering in the same way
a svm classifier finds non-linear decision surfaces.
This example will make points from 3 classes and perform kernelized k-means
clustering on those points. It will also do the same thing using spectral
clustering.
The classes are as follows:
- points very close to the origin
- points on the circle of radius 10 around the origin
- points that are on a circle of radius 4 but not around the origin at all
*/
#include <iostream>
#include <vector>
#include <dlib/clustering.h>
#include <dlib/rand.h>
using namespace std;
using namespace dlib;
int main()
{
// Here we declare that our samples will be 2 dimensional column vectors.
// (Note that if you don't know the dimensionality of your vectors at compile time
// you can change the 2 to a 0 and then set the size at runtime)
typedef matrix<double,2,1> sample_type;
// Now we are making a typedef for the kind of kernel we want to use. I picked the
// radial basis kernel because it only has one parameter and generally gives good
// results without much fiddling.
typedef radial_basis_kernel<sample_type> kernel_type;
// Here we declare an instance of the kcentroid object. It is the object used to
// represent each of the centers used for clustering. The kcentroid has 3 parameters
// you need to set. The first argument to the constructor is the kernel we wish to
// use. The second is a parameter that determines the numerical accuracy with which
// the object will perform part of the learning algorithm. Generally, smaller values
// give better results but cause the algorithm to attempt to use more dictionary vectors
// (and thus run slower and use more memory). The third argument, however, is the
// maximum number of dictionary vectors a kcentroid is allowed to use. So you can use
// it to control the runtime complexity.
kcentroid<kernel_type> kc(kernel_type(0.1),0.01, 8);
// Now we make an instance of the kkmeans object and tell it to use kcentroid objects
// that are configured with the parameters from the kc object we defined above.
kkmeans<kernel_type> test(kc);
std::vector<sample_type> samples;
std::vector<sample_type> initial_centers;
sample_type m;
dlib::rand rnd;
// we will make 50 points from each class
const long num = 50;
// make some samples near the origin
double radius = 0.5;
for (long i = 0; i < num; ++i)
{
double sign = 1;
if (rnd.get_random_double() < 0.5)
sign = -1;
m(0) = 2*radius*rnd.get_random_double()-radius;
m(1) = sign*sqrt(radius*radius - m(0)*m(0));
// add this sample to our set of samples we will run k-means
samples.push_back(m);
}
// make some samples in a circle around the origin but far away
radius = 10.0;
for (long i = 0; i < num; ++i)
{
double sign = 1;
if (rnd.get_random_double() < 0.5)
sign = -1;
m(0) = 2*radius*rnd.get_random_double()-radius;
m(1) = sign*sqrt(radius*radius - m(0)*m(0));
// add this sample to our set of samples we will run k-means
samples.push_back(m);
}
// make some samples in a circle around the point (25,25)
radius = 4.0;
for (long i = 0; i < num; ++i)
{
double sign = 1;
if (rnd.get_random_double() < 0.5)
sign = -1;
m(0) = 2*radius*rnd.get_random_double()-radius;
m(1) = sign*sqrt(radius*radius - m(0)*m(0));
// translate this point away from the origin
m(0) += 25;
m(1) += 25;
// add this sample to our set of samples we will run k-means
samples.push_back(m);
}
// tell the kkmeans object we made that we want to run k-means with k set to 3.
// (i.e. we want 3 clusters)
test.set_number_of_centers(3);
// You need to pick some initial centers for the k-means algorithm. So here
// we will use the dlib::pick_initial_centers() function which tries to find
// n points that are far apart (basically).
pick_initial_centers(3, initial_centers, samples, test.get_kernel());
// now run the k-means algorithm on our set of samples.
test.train(samples,initial_centers);
// now loop over all our samples and print out their predicted class. In this example
// all points are correctly identified.
for (unsigned long i = 0; i < samples.size()/3; ++i)
{
cout << test(samples[i]) << " ";
cout << test(samples[i+num]) << " ";
cout << test(samples[i+2*num]) << "\n";
}
// Now print out how many dictionary vectors each center used. Note that
// the maximum number of 8 was reached. If you went back to the kcentroid
// constructor and changed the 8 to some bigger number you would see that these
// numbers would go up. However, 8 is all we need to correctly cluster this dataset.
cout << "num dictionary vectors for center 0: " << test.get_kcentroid(0).dictionary_size() << endl;
cout << "num dictionary vectors for center 1: " << test.get_kcentroid(1).dictionary_size() << endl;
cout << "num dictionary vectors for center 2: " << test.get_kcentroid(2).dictionary_size() << endl;
// Finally, we can also solve the same kind of non-linear clustering problem with
// spectral_cluster(). The output is a vector that indicates which cluster each sample
// belongs to. Just like with kkmeans, it assigns each point to the correct cluster.
std::vector<unsigned long> assignments = spectral_cluster(kernel_type(0.1), samples, 3);
cout << mat(assignments) << endl;
}