mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
197 lines
7.8 KiB
C++
197 lines
7.8 KiB
C++
|
|
|
|
#include <dlib/dnn.h>
|
|
#include <iostream>
|
|
#include <dlib/data_io.h>
|
|
|
|
using namespace std;
|
|
using namespace dlib;
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
template <int stride, typename SUBNET>
|
|
using base_res = relu<add_prev1< bn_con<con<8,3,3,1,1,relu< bn_con<con<8,3,3,stride,stride,tag1<SUBNET>>>>>>>>;
|
|
|
|
template <int stride, typename SUBNET>
|
|
using base_ares = relu<add_prev1<affine<con<8,3,3,1,1,relu<affine<con<8,3,3,stride,stride,tag1<SUBNET>>>>>>>>;
|
|
|
|
template <typename SUBNET> using res = base_res<1,SUBNET>;
|
|
template <typename SUBNET> using res_down = base_res<2,SUBNET>;
|
|
template <typename SUBNET> using ares = base_ares<1,SUBNET>;
|
|
template <typename SUBNET> using ares_down = base_ares<2,SUBNET>;
|
|
|
|
template <typename SUBNET>
|
|
using pres = prelu<add_prev1< bn_con<con<8,3,3,1,1,prelu< bn_con<con<8,3,3,1,1,tag1<SUBNET>>>>>>>>;
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
int main(int argc, char** argv) try
|
|
{
|
|
if (argc != 2)
|
|
{
|
|
cout << "give MNIST data folder!" << endl;
|
|
return 1;
|
|
}
|
|
|
|
std::vector<matrix<unsigned char>> training_images;
|
|
std::vector<unsigned long> training_labels;
|
|
std::vector<matrix<unsigned char>> testing_images;
|
|
std::vector<unsigned long> testing_labels;
|
|
load_mnist_dataset(argv[1], training_images, training_labels, testing_images, testing_labels);
|
|
|
|
|
|
set_dnn_prefer_smallest_algorithms();
|
|
|
|
const unsigned long number_of_classes = 10;
|
|
typedef loss_multiclass_log<fc<number_of_classes,
|
|
avg_pool<11,11,11,11,
|
|
res<res<res<res_down<
|
|
repeat<9,res, // repeat this layer 9 times
|
|
res_down<
|
|
res<
|
|
input<matrix<unsigned char>
|
|
>>>>>>>>>>> net_type;
|
|
|
|
|
|
net_type net;
|
|
|
|
|
|
// If you wanted to use the same network but override the number of outputs at runtime
|
|
// you can do so like this:
|
|
net_type net2(num_fc_outputs(15));
|
|
|
|
// Let's imagine we wanted to replace some of the relu layers with prelu layers. We
|
|
// might do it like this:
|
|
typedef loss_multiclass_log<fc<number_of_classes,
|
|
avg_pool<11,11,11,11,
|
|
pres<res<res<res_down< // 2 prelu layers here
|
|
tag4<repeat<9,pres, // 9 groups, each containing 2 prelu layers
|
|
res_down<
|
|
res<
|
|
input<matrix<unsigned char>
|
|
>>>>>>>>>>>> net_type2;
|
|
|
|
// prelu layers have a floating point parameter. If you want to set it to something
|
|
// other than its default value you can do so like this:
|
|
net_type2 pnet(prelu_(0.2),
|
|
prelu_(0.2),
|
|
repeat_group(prelu_(0.3),prelu_(0.4)) // Initialize all the prelu instances in the repeat
|
|
// layer. repeat_group() is needed to group the things
|
|
// that are part of repeat's block.
|
|
);
|
|
// As you can see, a network will greedily assign things given to its constructor to
|
|
// the layers inside itself. The assignment is done in the order the layers are
|
|
// defined but it will skip layers where the assignment doesn't make sense.
|
|
|
|
|
|
// You can access sub layers of the network like this:
|
|
net.subnet().subnet().get_output();
|
|
layer<2>(net).get_output();
|
|
layer<relu>(net).get_output();
|
|
layer<tag1>(net).get_output();
|
|
// To further illustrate the use of layer(), let's loop over the repeated layers and
|
|
// print out their parameters. But first, let's grab a reference to the repeat layer.
|
|
// Since we tagged the repeat layer we can access it using the layer() method.
|
|
// layer<tag4>(pnet) returns the tag4 layer, but we want the repeat layer so we can
|
|
// give an integer as the second argument and it will jump that many layers down the
|
|
// network. In our case we need to jump just 1 layer down to get to repeat.
|
|
auto&& repeat_layer = layer<tag4,1>(pnet);
|
|
for (size_t i = 0; i < repeat_layer.num_repetitions(); ++i)
|
|
{
|
|
// The repeat layer just instantiates the network block a bunch of times as a
|
|
// network object. get_repeated_layer() allows us to grab each of these instances.
|
|
auto&& repeated_layer = repeat_layer.get_repeated_layer(i);
|
|
// Now that we have the i-th layer inside our repeat layer we can look at its
|
|
// properties. Recall that we repeated the "pres" network block, which is itself a
|
|
// network with a bunch of layers. So we can again use layer() to jump to the
|
|
// prelu layers we are interested in like so:
|
|
prelu_ prelu1 = layer<prelu>(repeated_layer).layer_details();
|
|
prelu_ prelu2 = layer<prelu>(repeated_layer.subnet()).layer_details();
|
|
cout << "first prelu layer parameter value: "<< prelu1.get_initial_param_value() << endl;;
|
|
cout << "second prelu layer parameter value: "<< prelu2.get_initial_param_value() << endl;;
|
|
}
|
|
|
|
|
|
|
|
|
|
dnn_trainer<net_type,adam> trainer(net,adam(0.001));
|
|
trainer.be_verbose();
|
|
trainer.set_synchronization_file("mnist_resnet_sync", std::chrono::seconds(100));
|
|
std::vector<matrix<unsigned char>> mini_batch_samples;
|
|
std::vector<unsigned long> mini_batch_labels;
|
|
dlib::rand rnd;
|
|
//trainer.train(training_images, training_labels);
|
|
while(trainer.get_step_size() >= 1e-3)
|
|
{
|
|
mini_batch_samples.clear();
|
|
mini_batch_labels.clear();
|
|
|
|
// make a 128 image mini-batch
|
|
while(mini_batch_samples.size() < 128)
|
|
{
|
|
auto idx = rnd.get_random_32bit_number()%training_images.size();
|
|
mini_batch_samples.push_back(training_images[idx]);
|
|
mini_batch_labels.push_back(training_labels[idx]);
|
|
}
|
|
|
|
trainer.train_one_step(mini_batch_samples, mini_batch_labels);
|
|
}
|
|
// wait for threaded processing to stop.
|
|
trainer.get_net();
|
|
|
|
net.clean();
|
|
serialize("mnist_res_network.dat") << net;
|
|
|
|
|
|
|
|
typedef loss_multiclass_log<fc<number_of_classes,
|
|
avg_pool<11,11,11,11,
|
|
ares<ares<ares<ares_down<
|
|
repeat<9,res,
|
|
ares_down<
|
|
ares<
|
|
input<matrix<unsigned char>
|
|
>>>>>>>>>>> test_net_type;
|
|
test_net_type tnet = net;
|
|
// or you could deserialize the saved network
|
|
deserialize("mnist_res_network.dat") >> tnet;
|
|
|
|
|
|
// Run the net on all the data to get predictions
|
|
std::vector<unsigned long> predicted_labels = tnet(training_images);
|
|
int num_right = 0;
|
|
int num_wrong = 0;
|
|
for (size_t i = 0; i < training_images.size(); ++i)
|
|
{
|
|
if (predicted_labels[i] == training_labels[i])
|
|
++num_right;
|
|
else
|
|
++num_wrong;
|
|
|
|
}
|
|
cout << "training num_right: " << num_right << endl;
|
|
cout << "training num_wrong: " << num_wrong << endl;
|
|
cout << "training accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
|
|
|
|
predicted_labels = tnet(testing_images);
|
|
num_right = 0;
|
|
num_wrong = 0;
|
|
for (size_t i = 0; i < testing_images.size(); ++i)
|
|
{
|
|
if (predicted_labels[i] == testing_labels[i])
|
|
++num_right;
|
|
else
|
|
++num_wrong;
|
|
|
|
}
|
|
cout << "testing num_right: " << num_right << endl;
|
|
cout << "testing num_wrong: " << num_wrong << endl;
|
|
cout << "testing accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
|
|
|
|
}
|
|
catch(std::exception& e)
|
|
{
|
|
cout << e.what() << endl;
|
|
}
|
|
|