mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
6be5d5a174
--HG-- rename : examples/krls_ex.cpp => examples/rvm_regression_ex.cpp extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402513
76 lines
2.2 KiB
C++
76 lines
2.2 KiB
C++
/*
|
|
This is an example illustrating the use of the RVM regression object
|
|
from the dlib C++ Library.
|
|
|
|
This example will train on data from the sinc function.
|
|
|
|
*/
|
|
|
|
#include <iostream>
|
|
#include <vector>
|
|
|
|
#include "dlib/svm.h"
|
|
|
|
using namespace std;
|
|
using namespace dlib;
|
|
|
|
// Here is the sinc function we will be trying to learn with rvm regression
|
|
double sinc(double x)
|
|
{
|
|
if (x == 0)
|
|
return 1;
|
|
return sin(x)/x;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
// Here we declare that our samples will be 1 dimensional column vectors.
|
|
typedef matrix<double,1,1> sample_type;
|
|
|
|
// Now we are making a typedef for the kind of kernel we want to use. I picked the
|
|
// radial basis kernel because it only has one parameter and generally gives good
|
|
// results without much fiddling.
|
|
typedef radial_basis_kernel<sample_type> kernel_type;
|
|
|
|
// Here we declare an instance of the rvm_regression_trainer object. This is the
|
|
// object that we will later use to do the training.
|
|
rvm_regression_trainer<kernel_type> trainer;
|
|
// Here we set the kernel we want to use for training. The 0.05 is the gamma
|
|
// parameter to the radial_basis_kernel.
|
|
trainer.set_kernel(kernel_type(0.05));
|
|
|
|
// Now sample some points from the sinc() function
|
|
sample_type m;
|
|
std::vector<sample_type> samples;
|
|
std::vector<double> labels;
|
|
for (double x = -10; x <= 4; x += 1)
|
|
{
|
|
m(0) = x;
|
|
samples.push_back(m);
|
|
labels.push_back(sinc(x));
|
|
}
|
|
|
|
// now train a function based on our sample points
|
|
decision_function<kernel_type> test = trainer.train(samples, labels);
|
|
|
|
// now we output the value of the sinc function for a few test points as well as the
|
|
// value predicted by our regression.
|
|
m(0) = 2.5; cout << sinc(m(0)) << " " << test(m) << endl;
|
|
m(0) = 0.1; cout << sinc(m(0)) << " " << test(m) << endl;
|
|
m(0) = -4; cout << sinc(m(0)) << " " << test(m) << endl;
|
|
m(0) = 5.0; cout << sinc(m(0)) << " " << test(m) << endl;
|
|
|
|
// The output is as follows:
|
|
//0.239389 0.240989
|
|
//0.998334 0.999538
|
|
//-0.189201 -0.188453
|
|
//-0.191785 -0.226516
|
|
|
|
|
|
// The first column is the true value of the sinc function and the second
|
|
// column is the output from the rvm estimate.
|
|
|
|
}
|
|
|
|
|