dlib/examples/dnn_semantic_segmentation_ex.h
Juha Reunanen d175c35074 Instance segmentation (#1918)
* Add instance segmentation example - first version of training code

* Add MMOD options; get rid of the cache approach, and instead load all MMOD rects upfront

* Improve console output

* Set filter count

* Minor tweaking

* Inference - first version, at least compiles!

* Ignore overlapped boxes

* Ignore even small instances

* Set overlaps_ignore

* Add TODO remarks

* Revert "Set overlaps_ignore"

This reverts commit 65adeff1f8.

* Set result size

* Set label image size

* Take ignore-color into account

* Fix the cropping rect's aspect ratio; also slightly expand the rect

* Draw the largest findings last

* Improve masking of the current instance

* Add some perturbation to the inputs

* Simplify ground-truth reading; fix random cropping

* Read even class labels

* Tweak default minibatch size

* Learn only one class

* Really train only instances of the selected class

* Remove outdated TODO remark

* Automatically skip images with no detections

* Print to console what was found

* Fix class index problem

* Fix indentation

* Allow to choose multiple classes

* Draw rect in the color of the corresponding class

* Write detector window classes to ostream; also group detection windows by class (when ostreaming)

* Train a separate instance segmentation network for each classlabel

* Use separate synchronization file for each seg net of each class

* Allow more overlap

* Fix sorting criterion

* Fix interpolating the predicted mask

* Improve bilinear interpolation: if output type is an integer, round instead of truncating

* Add helpful comments

* Ignore large aspect ratios; refactor the code; tweak some network parameters

* Simplify the segmentation network structure; make the object detection network more complex in turn

* Problem: CUDA errors not reported properly to console
Solution: stop and join data loader threads even in case of exceptions

* Minor parameters tweaking

* Loss may have increased, even if prob_loss_increasing_thresh > prob_loss_increasing_thresh_max_value

* Add previous_loss_values_dump_amount to previous_loss_values.size() when deciding if loss has been increasing

* Improve behaviour when loss actually increased after disk sync

* Revert some of the earlier change

* Disregard dumped loss values only when deciding if learning rate should be shrunk, but *not* when deciding if loss has been going up since last disk sync

* Revert "Revert some of the earlier change"

This reverts commit 6c852124ef.

* Keep enough previous loss values, until the disk sync

* Fix maintaining the dumped (now "effectively disregarded") loss values count

* Detect cats instead of aeroplanes

* Add helpful logging

* Clarify the intention and the code

* Review fixes

* Add operator== for the other pixel types as well; remove the inline

* If available, use constexpr if

* Revert "If available, use constexpr if"

This reverts commit 503d4dd335.

* Simplify code as per review comments

* Keep estimating steps_without_progress, even if steps_since_last_learning_rate_shrink < iter_without_progress_thresh

* Clarify console output

* Revert "Keep estimating steps_without_progress, even if steps_since_last_learning_rate_shrink < iter_without_progress_thresh"

This reverts commit 9191ebc776.

* To keep the changes to a bare minimum, revert the steps_since_last_learning_rate_shrink change after all (at least for now)

* Even empty out some of the previous test loss values

* Minor review fixes

* Can't use C++14 features here

* Do not use the struct name as a variable name
2019-11-14 22:53:16 -05:00

168 lines
9.3 KiB
C++

// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
Semantic segmentation using the PASCAL VOC2012 dataset.
In segmentation, the task is to assign each pixel of an input image
a label - for example, 'dog'. Then, the idea is that neighboring
pixels having the same label can be connected together to form a
larger region, representing a complete (or partially occluded) dog.
So technically, segmentation can be viewed as classification of
individual pixels (using the relevant context in the input images),
however the goal usually is to identify meaningful regions that
represent complete entities of interest (such as dogs).
Instructions how to run the example:
1. Download the PASCAL VOC2012 data, and untar it somewhere.
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
2. Build the dnn_semantic_segmentation_train_ex example program.
3. Run:
./dnn_semantic_segmentation_train_ex /path/to/VOC2012
4. Wait while the network is being trained.
5. Build the dnn_semantic_segmentation_ex example program.
6. Run:
./dnn_semantic_segmentation_ex /path/to/VOC2012-or-other-images
An alternative to steps 2-4 above is to download a pre-trained network
from here: http://dlib.net/files/semantic_segmentation_voc2012net_v2.dnn
It would be a good idea to become familiar with dlib's DNN tooling before reading this
example. So you should read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp
before reading this example program.
*/
#ifndef DLIB_DNn_SEMANTIC_SEGMENTATION_EX_H_
#define DLIB_DNn_SEMANTIC_SEGMENTATION_EX_H_
#include <dlib/dnn.h>
#include "pascal_voc_2012.h"
// ----------------------------------------------------------------------------------------
// Introduce the building blocks used to define the segmentation network.
// The network first does residual downsampling (similar to the dnn_imagenet_(train_)ex
// example program), and then residual upsampling. In addition, U-Net style skip
// connections are used, so that not every simple detail needs to reprented on the low
// levels. (See Ronneberger et al. (2015), U-Net: Convolutional Networks for Biomedical
// Image Segmentation, https://arxiv.org/pdf/1505.04597.pdf)
template <int N, template <typename> class BN, int stride, typename SUBNET>
using block = BN<dlib::con<N,3,3,1,1,dlib::relu<BN<dlib::con<N,3,3,stride,stride,SUBNET>>>>>;
template <int N, template <typename> class BN, int stride, typename SUBNET>
using blockt = BN<dlib::cont<N,3,3,1,1,dlib::relu<BN<dlib::cont<N,3,3,stride,stride,SUBNET>>>>>;
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual = dlib::add_prev1<block<N,BN,1,dlib::tag1<SUBNET>>>;
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_down = dlib::add_prev2<dlib::avg_pool<2,2,2,2,dlib::skip1<dlib::tag2<block<N,BN,2,dlib::tag1<SUBNET>>>>>>;
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_up = dlib::add_prev2<dlib::cont<N,2,2,2,2,dlib::skip1<dlib::tag2<blockt<N,BN,2,dlib::tag1<SUBNET>>>>>>;
template <int N, typename SUBNET> using res = dlib::relu<residual<block,N,dlib::bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares = dlib::relu<residual<block,N,dlib::affine,SUBNET>>;
template <int N, typename SUBNET> using res_down = dlib::relu<residual_down<block,N,dlib::bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares_down = dlib::relu<residual_down<block,N,dlib::affine,SUBNET>>;
template <int N, typename SUBNET> using res_up = dlib::relu<residual_up<block,N,dlib::bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares_up = dlib::relu<residual_up<block,N,dlib::affine,SUBNET>>;
// ----------------------------------------------------------------------------------------
template <typename SUBNET> using res64 = res<64,SUBNET>;
template <typename SUBNET> using res128 = res<128,SUBNET>;
template <typename SUBNET> using res256 = res<256,SUBNET>;
template <typename SUBNET> using res512 = res<512,SUBNET>;
template <typename SUBNET> using ares64 = ares<64,SUBNET>;
template <typename SUBNET> using ares128 = ares<128,SUBNET>;
template <typename SUBNET> using ares256 = ares<256,SUBNET>;
template <typename SUBNET> using ares512 = ares<512,SUBNET>;
template <typename SUBNET> using level1 = dlib::repeat<2,res64,res<64,SUBNET>>;
template <typename SUBNET> using level2 = dlib::repeat<2,res128,res_down<128,SUBNET>>;
template <typename SUBNET> using level3 = dlib::repeat<2,res256,res_down<256,SUBNET>>;
template <typename SUBNET> using level4 = dlib::repeat<2,res512,res_down<512,SUBNET>>;
template <typename SUBNET> using alevel1 = dlib::repeat<2,ares64,ares<64,SUBNET>>;
template <typename SUBNET> using alevel2 = dlib::repeat<2,ares128,ares_down<128,SUBNET>>;
template <typename SUBNET> using alevel3 = dlib::repeat<2,ares256,ares_down<256,SUBNET>>;
template <typename SUBNET> using alevel4 = dlib::repeat<2,ares512,ares_down<512,SUBNET>>;
template <typename SUBNET> using level1t = dlib::repeat<2,res64,res_up<64,SUBNET>>;
template <typename SUBNET> using level2t = dlib::repeat<2,res128,res_up<128,SUBNET>>;
template <typename SUBNET> using level3t = dlib::repeat<2,res256,res_up<256,SUBNET>>;
template <typename SUBNET> using level4t = dlib::repeat<2,res512,res_up<512,SUBNET>>;
template <typename SUBNET> using alevel1t = dlib::repeat<2,ares64,ares_up<64,SUBNET>>;
template <typename SUBNET> using alevel2t = dlib::repeat<2,ares128,ares_up<128,SUBNET>>;
template <typename SUBNET> using alevel3t = dlib::repeat<2,ares256,ares_up<256,SUBNET>>;
template <typename SUBNET> using alevel4t = dlib::repeat<2,ares512,ares_up<512,SUBNET>>;
// ----------------------------------------------------------------------------------------
template <
template<typename> class TAGGED,
template<typename> class PREV_RESIZED,
typename SUBNET
>
using resize_and_concat = dlib::add_layer<
dlib::concat_<TAGGED,PREV_RESIZED>,
PREV_RESIZED<dlib::resize_prev_to_tagged<TAGGED,SUBNET>>>;
template <typename SUBNET> using utag1 = dlib::add_tag_layer<2100+1,SUBNET>;
template <typename SUBNET> using utag2 = dlib::add_tag_layer<2100+2,SUBNET>;
template <typename SUBNET> using utag3 = dlib::add_tag_layer<2100+3,SUBNET>;
template <typename SUBNET> using utag4 = dlib::add_tag_layer<2100+4,SUBNET>;
template <typename SUBNET> using utag1_ = dlib::add_tag_layer<2110+1,SUBNET>;
template <typename SUBNET> using utag2_ = dlib::add_tag_layer<2110+2,SUBNET>;
template <typename SUBNET> using utag3_ = dlib::add_tag_layer<2110+3,SUBNET>;
template <typename SUBNET> using utag4_ = dlib::add_tag_layer<2110+4,SUBNET>;
template <typename SUBNET> using concat_utag1 = resize_and_concat<utag1,utag1_,SUBNET>;
template <typename SUBNET> using concat_utag2 = resize_and_concat<utag2,utag2_,SUBNET>;
template <typename SUBNET> using concat_utag3 = resize_and_concat<utag3,utag3_,SUBNET>;
template <typename SUBNET> using concat_utag4 = resize_and_concat<utag4,utag4_,SUBNET>;
// ----------------------------------------------------------------------------------------
static const char* semantic_segmentation_net_filename = "semantic_segmentation_voc2012net_v2.dnn";
// ----------------------------------------------------------------------------------------
// training network type
using bnet_type = dlib::loss_multiclass_log_per_pixel<
dlib::cont<class_count,1,1,1,1,
dlib::relu<dlib::bn_con<dlib::cont<64,7,7,2,2,
concat_utag1<level1t<
concat_utag2<level2t<
concat_utag3<level3t<
concat_utag4<level4t<
level4<utag4<
level3<utag3<
level2<utag2<
level1<dlib::max_pool<3,3,2,2,utag1<
dlib::relu<dlib::bn_con<dlib::con<64,7,7,2,2,
dlib::input<dlib::matrix<dlib::rgb_pixel>>
>>>>>>>>>>>>>>>>>>>>>>>>>;
// testing network type (replaced batch normalization with fixed affine transforms)
using anet_type = dlib::loss_multiclass_log_per_pixel<
dlib::cont<class_count,1,1,1,1,
dlib::relu<dlib::affine<dlib::cont<64,7,7,2,2,
concat_utag1<alevel1t<
concat_utag2<alevel2t<
concat_utag3<alevel3t<
concat_utag4<alevel4t<
alevel4<utag4<
alevel3<utag3<
alevel2<utag2<
alevel1<dlib::max_pool<3,3,2,2,utag1<
dlib::relu<dlib::affine<dlib::con<64,7,7,2,2,
dlib::input<dlib::matrix<dlib::rgb_pixel>>
>>>>>>>>>>>>>>>>>>>>>>>>>;
// ----------------------------------------------------------------------------------------
#endif // DLIB_DNn_SEMANTIC_SEGMENTATION_EX_H_