/* This is an example illustrating the use of the support vector machine utilities from the dlib C++ Library. This example creates a simple set of data to train on and then shows you how to use the cross validation and svm training functions to find a good decision function that can classify examples in our data set. The data used in this example will be 2 dimensional data and will come from a distribution where points with a distance less than 10 from the origin are labeled +1 and all other points are labeled as -1. */ #include #include "dlib/svm.h" using namespace std; using namespace dlib; int main() { // The svm functions use column vectors to contain a lot of the data on which they they // operate. So the first thing we do here is declare a convenient typedef. // This typedef declares a matrix with 2 rows and 1 column. It will be the // object that contains each of our 2 dimensional samples. (Note that if you wanted // more than 2 features in this vector you can simply change the 2 to something else. // Or if you don't know how many features you want until runtime then you can put a 0 // here and use the matrix.set_size() member function) typedef matrix sample_type; // This is a typedef for the type of kernel we are going to use in this example. // In this case I have selected the radial basis kernel that can operate on our // 2D sample_type objects typedef radial_basis_kernel kernel_type; // Now we make objects to contain our samples and their respective labels. std::vector samples; std::vector labels; // Now lets put some data into our samples and labels objects. We do this // by looping over a bunch of points and labeling them according to their // distance from the origin. for (int r = -20; r <= 20; ++r) { for (int c = -20; c <= 20; ++c) { sample_type samp; samp(0) = r; samp(1) = c; samples.push_back(samp); // if this point is less than 10 from the origin if (sqrt((double)r*r + c*c) <= 10) labels.push_back(+1); else labels.push_back(-1); } } // Here we normalize all the samples by subtracting their mean and dividing by their standard deviation. // This is generally a good idea since it often heads off numerical stability problems and also // prevents one large feature from smothering others. Doing this doesn't matter much in this example // so I'm just doing this here so you can see an easy way to accomplish this with // the library. vector_normalizer normalizer; // let the normalizer learn the mean and standard deviation of the samples normalizer.train(samples); // now normalize each sample for (unsigned long i = 0; i < samples.size(); ++i) samples[i] = normalizer(samples[i]); // Now that we have some data we want to train on it. However, there are two parameters to the // training. These are the nu and gamma parameters. Our choice for these parameters will // influence how good the resulting decision function is. To test how good a particular choice // of these parameters are we can use the cross_validate_trainer() function to perform n-fold cross // validation on our training data. However, there is a problem with the way we have sampled // our distribution above. The problem is that there is a definite ordering to the samples. // That is, the first half of the samples look like they are from a different distribution // than the second half do. This would screw up the cross validation process but we can // fix it by randomizing the order of the samples with the following function call. randomize_samples(samples, labels); // The nu parameter has a maximum value that is dependent on the ratio of the +1 to -1 // labels in the training data. This function finds that value. const double max_nu = maximum_nu(labels); // here we make an instance of the svm_nu_trainer object that uses our kernel type. svm_nu_trainer trainer; // Now we loop over some different nu and gamma values to see how good they are. Note // that this is just a simple brute force way to try out a few possible parameter // choices. You may want to investigate more sophisticated strategies for determining // good parameter choices. cout << "doing cross validation" << endl; for (double gamma = 0.00001; gamma <= 1; gamma += 0.1) { for (double nu = 0.00001; nu < max_nu; nu += 0.1) { // tell the trainer the parameters we want to use trainer.set_kernel(kernel_type(gamma)); trainer.set_nu(nu); cout << "gamma: " << gamma << " nu: " << nu; // Print out the cross validation accuracy for 3-fold cross validation using the current gamma and nu. // cross_validate_trainer() returns a row vector. The first element of the vector is the fraction // of +1 training examples correctly classified and the second number is the fraction of -1 training // examples correctly classified. cout << " cross validation accuracy: " << cross_validate_trainer(trainer, samples, labels, 3); } } // From looking at the output of the above loop it turns out that a good value for // nu and gamma for this problem is 0.1 for both. So that is what we will use. // Now we train on the full set of data and obtain the resulting decision function. We use the // value of 0.1 for nu and gamma. The decision function will return values >= 0 for samples it predicts // are in the +1 class and numbers < 0 for samples it predicts to be in the -1 class. trainer.set_kernel(kernel_type(0.1)); trainer.set_nu(0.1); typedef decision_function dec_funct_type; typedef normalized_function funct_type; // Here we are making an instance of the normalized_function object. This object provides a convenient // way to store the vector normalization information along with the decision function we are // going to learn. funct_type learned_function; learned_function.normalizer = normalizer; // save normalization information learned_function.function = trainer.train(samples, labels); // perform the actual SVM training and save the results // print out the number of support vectors in the resulting decision function cout << "\nnumber of support vectors in our learned_function is " << learned_function.function.support_vectors.nr() << endl; // now lets try this decision_function on some samples we haven't seen before sample_type sample; sample(0) = 3.123; sample(1) = 2; cout << "This sample should be >= 0 and it is classified as a " << learned_function(sample) << endl; sample(0) = 3.123; sample(1) = 9.3545; cout << "This sample should be >= 0 and it is classified as a " << learned_function(sample) << endl; sample(0) = 13.123; sample(1) = 9.3545; cout << "This sample should be < 0 and it is classified as a " << learned_function(sample) << endl; sample(0) = 13.123; sample(1) = 0; cout << "This sample should be < 0 and it is classified as a " << learned_function(sample) << endl; // We can also train a decision function that reports a well conditioned probability // instead of just a number > 0 for the +1 class and < 0 for the -1 class. An example // of doing that follows: typedef probabilistic_decision_function probabilistic_funct_type; typedef normalized_function pfunct_type; pfunct_type learned_pfunct; learned_pfunct.normalizer = normalizer; learned_pfunct.function = train_probabilistic_decision_function(trainer, samples, labels, 3); // Now we have a function that returns the probability that a given sample is of the +1 class. // print out the number of support vectors in the resulting decision function. // (it should be the same as in the one above) cout << "\nnumber of support vectors in our learned_pfunct is " << learned_pfunct.function.decision_funct.support_vectors.nr() << endl; sample(0) = 3.123; sample(1) = 2; cout << "This +1 example should have high probability. It's probability is: " << learned_pfunct(sample) << endl; sample(0) = 3.123; sample(1) = 9.3545; cout << "This +1 example should have high probability. It's probability is: " << learned_pfunct(sample) << endl; sample(0) = 13.123; sample(1) = 9.3545; cout << "This -1 example should have low probability. It's probability is: " << learned_pfunct(sample) << endl; sample(0) = 13.123; sample(1) = 0; cout << "This -1 example should have low probability. It's probability is: " << learned_pfunct(sample) << endl; // Another thing that is worth knowing is that just about everything in dlib is serializable. // So for example, you can save the learned_pfunct object to disk and recall it later like so: ofstream fout("saved_function.dat",ios::binary); serialize(learned_pfunct,fout); fout.close(); // now lets open that file back up and load the function object it contains ifstream fin("saved_function.dat",ios::binary); deserialize(learned_pfunct, fin); // Note that there is also an example program that comes with dlib called the file_to_code_ex.cpp // example. It is a simple program that takes a file and outputs a piece of C++ code // that is able to fully reproduce the file's contents in the form of a std::string object. // So you can use that along with the std::istringstream to save learned decision functions // inside your actual C++ code files if you want. // Lastly, note that the decision functions we trained above involved well over 100 // support vectors. Support vector machines in general tend to find decision functions // that involve a lot of support vectors. This is significant because the more // support vectors in a decision function, the longer it takes to classify new examples. // So dlib provides the ability to find an approximation to the normal output of a // support vector machine using fewer support vectors. // Here we determine the cross validation accuracy when we approximate the output // using only 10 support vectors. To do this we use the reduced2() function. It // takes a trainer object and the number of support vectors to use and returns // a new trainer object that applies the necessary post processing during the creation // of decision function objects. cout << "\ncross validation accuracy with only 10 support vectors: " << cross_validate_trainer(reduced2(trainer,10), samples, labels, 3); // Lets print out the original cross validation score too for comparison. cout << "cross validation accuracy with all the original support vectors: " << cross_validate_trainer(trainer, samples, labels, 3); // When you run this program you should see that, for this problem, you can reduce // the number of support vectors down to 10 without hurting the cross validation // accuracy. // To get the reduced decision function out we would just do this: learned_function.function = reduced2(trainer,10).train(samples, labels); // And similarly for the probabilistic_decision_function: learned_pfunct.function = train_probabilistic_decision_function(reduced2(trainer,10), samples, labels, 3); }