#!/usr/bin/python # The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt # # This example program shows how to find frontal human faces in an image. In # particular, it shows how you can take a list of images from the command # line and display each on the screen with red boxes overlaid on each human # face. # # The examples/faces folder contains some jpg images of people. You can run # this program on them and see the detections by executing the # following command: # ./face_detector.py ../examples/faces/*.jpg # # This face detector is made using the now classic Histogram of Oriented # Gradients (HOG) feature combined with a linear classifier, an image # pyramid, and sliding window detection scheme. This type of object detector # is fairly general and capable of detecting many types of semi-rigid objects # in addition to human faces. Therefore, if you are interested in making # your own object detectors then read the train_object_detector.py example # program. # # # COMPILING THE DLIB PYTHON INTERFACE # Dlib comes with a compiled python interface for python 2.7 on MS Windows. If # you are using another python version or operating system then you need to # compile the dlib python interface before you can use this file. To do this, # run compile_dlib_python_module.bat. This should work on any operating # system so long as you have CMake and boost-python installed. # On Ubuntu, this can be done easily by running the command: # sudo apt-get install libboost-python-dev cmake # # Also note that this example requires scikit-image which can be installed # via the command: # pip install -U scikit-image # Or downloaded from http://scikit-image.org/download.html. import sys import dlib from skimage import io detector = dlib.get_frontal_face_detector() win = dlib.image_window() for f in sys.argv[1:]: print("Processing file: {}".format(f)) img = io.imread(f) # The 1 in the second argument indicates that we should upsample the image # 1 time. This will make everything bigger and allow us to detect more # faces. dets = detector(img, 1) print("Number of faces detected: {}".format(len(dets))) for k, d in enumerate(dets): print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( k, d.left(), d.top(), d.right(), d.bottom())) win.clear_overlay() win.set_image(img) win.add_overlay(dets) raw_input("Hit enter to continue")