// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt /* This is an example illustrating the use of the matrix object from the dlib C++ Library. */ #include #include "dlib/matrix.h" using namespace dlib; using namespace std; // ---------------------------------------------------------------------------------------- int main() { // Lets begin this example by using the library to solve a simple // linear system. // // We will find the value of x such that y = M*x where // // 3.5 // y = 1.2 // 7.8 // // and M is // // 54.2 7.4 12.1 // M = 1 2 3 // 5.9 0.05 1 // First lets declare these 3 matrices. // This declares a matrix that contains doubles and has 3 rows and 1 column. matrix y; // Make a 3 by 3 matrix of doubles for the M matrix. matrix M; // Make a matrix of doubles that has unknown dimensions (the dimensions are // decided at runtime unlike the above two matrices which are bound at compile // time). We could declare x the same way as y but I'm doing it differently // for the purposes of illustration. matrix x; // You may be wondering why someone would want to specify the size of a matrix // at compile time when you don't have to. The reason is two fold. First, // there is often a substantial performance improvement, especially for small // matrices, because the compiler is able to perform loop unrolling if it knows // the sizes of matrices. Second, the dlib::matrix object checks these compile // time sizes to ensure that the matrices are being used correctly. For example, // if you attempt to compile the expression y = M; or x = y*y; you will get // a compiler error on those lines since those are not legal matrix operations. // So if you know the size of a matrix at compile time then it is always a good // idea to let the compiler know about it. // now we need to initialize the y and M matrices and we can do so like this: M = 54.2, 7.4, 12.1, 1, 2, 3, 5.9, 0.05, 1; y = 3.5, 1.2, 7.8; // the solution can be obtained now by multiplying the inverse of M with y x = inv(M)*y; cout << "x: \n" << x << endl; // We can check that it really worked by plugging x back into the original equation // and subtracting y to see if we get a column vector with values all very close // to zero (Which is what happens. Also, the values may not be exactly zero because // there may be some numerical error and round off). cout << "M*x - y: \n" << M*x - y << endl; // Also note that we can create run-time sized column or row vectors like so matrix runtime_sized_column_vector; matrix runtime_sized_row_vector; // and then they are sized by saying runtime_sized_column_vector.set_size(3); // Similarly, the x matrix can be resized by calling set_size(num rows, num columns). For example x.set_size(3,4); // x now has 3 rows and 4 columns. // The elements of a matrix are accessed using the () operator like so cout << M(0,1) << endl; // The above expression prints out the value 7.4. That is, the value of // the element at row 0 and column 1. // Let's compute the sum of elements in the M matrix. double M_sum = 0; // loop over all the rows for (long r = 0; r < M.nr(); ++r) { // loop over all the columns for (long c = 0; c < M.nc(); ++c) { M_sum += M(r,c); } } cout << "sum of all elements in M is " << M_sum << endl; // The above code is just to show you how to loop over the elements of a matrix. An // easier way to find this sum is to do the following: cout << "sum of all elements in M is " << sum(M) << endl; // If we have a matrix that is a row or column vector. That is, it contains either // a single row or a single column then we know that any access is always either // to row 0 or column 0 so we can omit that 0 and use the following syntax. cout << y(1) << endl; // The above expression prints out the value 1.2 // --------------------------------- Comparison with MATLAB --------------------------------- // Here I list a set of Matlab commands and their equivalent expressions using the dlib matrix. matrix A, B, C, D, E; matrix Aint; matrix Blong; // MATLAB: A = eye(3) A = identity_matrix(3); // MATLAB: B = ones(3,4) B = ones_matrix(3,4); // MATLAB: B = rand(3,4) B = randm(3,4); // MATLAB: C = 1.4*A C = 1.4*A; // MATLAB: D = A.*C D = pointwise_multiply(A,C); // MATLAB: E = A * B E = A*B; // MATLAB: E = A + B E = A + C; // MATLAB: E = A + 5 E = A + 5; // MATLAB: E = E' E = trans(E); // Note that if you want a conjugate transpose then you need to say conj(trans(E)) // MATLAB: E = B' * B E = trans(B)*B; double var; // MATLAB: var = A(1,2) var = A(0,1); // dlib::matrix is 0 indexed rather than starting at 1 like Matlab. // MATLAB: C = round(C) C = round(C); // MATLAB: C = floor(C) C = floor(C); // MATLAB: C = ceil(C) C = ceil(C); // MATLAB: C = diag(B) C = diag(B); // MATLAB: B = cast(A, "int32") Aint = matrix_cast(A); // MATLAB: A = B(1,:) A = rowm(B,0); // MATLAB: A = B([1:2],:) A = rowm(B,range(0,1)); // MATLAB: A = B(:,1) A = colm(B,0); // MATLAB: A = [1:5] Blong = range(1,5); // MATLAB: A = [1:2:5] Blong = range(1,2,5); // MATLAB: A = B([1:3], [1:2]) A = subm(B, range(0,2), range(0,1)); // or equivalently A = subm(B, rectangle(0,0,1,2)); // MATLAB: A = B([1:3], [1:2:4]) A = subm(B, range(0,2), range(0,2,3)); // MATLAB: B(:,:) = 5 B = 5; // or equivalently set_all_elements(B,5); // MATLAB: B([1:2],[1,2]) = 7 set_subm(B,range(0,1), range(0,1)) = 7; // MATLAB: B([1:3],[2:3]) = A set_subm(B,range(0,2), range(1,2)) = A; // MATLAB: B(:,1) = 4 set_colm(B,0) = 4; // MATLAB: B(:,[1:2]) = 4 set_colm(B,range(0,1)) = 4; // MATLAB: B(:,1) = B(:,2) set_colm(B,0) = colm(B,1); // MATLAB: B(1,:) = 4 set_rowm(B,0) = 4; // MATLAB: B(1,:) = B(2,:) set_rowm(B,0) = rowm(B,1); // MATLAB: var = det(E' * E) var = det(trans(E)*E); // MATLAB: C = pinv(E) C = pinv(E); // MATLAB: C = inv(E) C = inv(E); // MATLAB: [A,B,C] = svd(E) svd(E,A,B,C); // MATLAB: A = chol(E,'lower') A = chol(E); // MATLAB: var = min(min(A)) var = min(A); } // ----------------------------------------------------------------------------------------