// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt /* This is an example illustrating the use of the deep learning tools from the dlib C++ Library. I'm assuming you have already read the dnn_introduction_ex.cpp and the dnn_introduction2_ex.cpp examples. So in this example program I'm going to go over a transfer learning example, which includes: - Defining a layer visitor to modify the some network parameters for fine-tuning - Using pretrained layers of a network for another task */ #include #include // This header file includes a generic definition of the most common ResNet architectures #include "resnet.h" using namespace std; using namespace dlib; // In this simple example we will show how to load a pretrained network and use it for a // different task. In particular, we will load a ResNet50 trained on ImageNet, adjust // some of its parameters and use it as a pretrained backbone for some metric learning // task. // Let's start by defining a network that will use the ResNet50 backbone from resnet.h namespace model { template class BN> using net_type = loss_metric< fc_no_bias<128, avg_pool_everything< typename resnet::def::template backbone_50< input_rgb_image >>>>; using train = net_type; using infer = net_type; } // Next, we define a layer visitor that will modify the weight decay of a network. The // main interest of this class is to show how one can define custom visitors that modify // some network parameters. class visitor_weight_decay_multiplier { public: visitor_weight_decay_multiplier(double new_weight_decay_multiplier_) : new_weight_decay_multiplier(new_weight_decay_multiplier_) {} template void operator()(layer& l) const { set_weight_decay_multiplier(l, new_weight_decay_multiplier); } private: double new_weight_decay_multiplier; }; int main() try { // Let's instantiate our network in train mode. model::train net; // We create a new scope so that resources from the loaded network are freed // automatically when leaving the scope. { // Now, let's define the classic ResNet50 network and load the pretrained model on // ImageNet. resnet::train_50 resnet50; std::vector labels; deserialize("resnet50_1000_imagenet_classifier.dnn") >> resnet50 >> labels; // For transfer learning, we are only interested in the ResNet50's backbone, which // lays below the loss and the fc layers, so we can extract it as: auto backbone = std::move(resnet50.subnet().subnet()); // We can now assign ResNet50's backbone to our network skipping the different // layers, in our case, the loss layer and the fc layer: net.subnet().subnet() = backbone; // An alternative way to use the pretrained network on a different // network is to extract the relevant part of the network (we remove // loss and fc layers), stack the new layers on top of it and assign // the network. using net_type = loss_metric>; net_type net2; net2.subnet().subnet() = backbone; } // We can use the visit_layers function to modify the weight decay of the entire // network: visit_computational_layers(net, visitor_weight_decay_multiplier(0.001)); // We can also use predefined visitors to affect the learning rate of the whole // network. set_all_learning_rate_multipliers(net, 0.5); // Modifying the learning rates of a network is a common practice for fine tuning, for // this reason it is already provided. However, it is implemented internally using a // visitor that is very similar to the one defined in this example. // Usually, we want to freeze the network, except for the top layers: visit_computational_layers(net.subnet().subnet(), visitor_weight_decay_multiplier(0)); set_all_learning_rate_multipliers(net.subnet().subnet(), 0); // Alternatively, we can use the visit_layers_range to modify only a specific set of // layers: visit_computational_layers_range<0, 2>(net, visitor_weight_decay_multiplier(1)); // Sometimes we might want to set the learning rate differently throughout the network. // Here we show how to use adjust the learning rate at the different ResNet50's // convolutional blocks: set_learning_rate_multipliers_range< 0, 2>(net, 1); set_learning_rate_multipliers_range< 2, 38>(net, 0.1); set_learning_rate_multipliers_range< 38, 107>(net, 0.01); set_learning_rate_multipliers_range<107, 154>(net, 0.001); set_learning_rate_multipliers_range<154, 193>(net, 0.0001); // Finally, we can check the results by printing the network. But before, if we // forward an image through the network, we will see tensors shape at every layer. matrix image(224, 224); assign_all_pixels(image, rgb_pixel(0, 0, 0)); std::vector> minibatch(1, image); resizable_tensor input; net.to_tensor(minibatch.begin(), minibatch.end(), input); net.forward(input); cout << net << endl; cout << "input size=(" << "num:" << input.num_samples() << ", " << "k:" << input.k() << ", " << "nr:" << input.nr() << ", " "nc:" << input.nc() << ")" << endl; // We can also print the number of parameters of the network: cout << "number of network parameters: " << count_parameters(net) << endl; // From this point on, we can fine-tune the new network using this pretrained backbone // on another task, such as the one showed in dnn_metric_learning_on_images_ex.cpp. return EXIT_SUCCESS; } catch (const serialization_error& e) { cout << e.what() << endl; cout << "You need to download a copy of the file resnet50_1000_imagenet_classifier.dnn" << endl; cout << "available at http://dlib.net/files/resnet50_1000_imagenet_classifier.dnn.bz2" << endl; cout << endl; return EXIT_FAILURE; } catch (const exception& e) { cout << e.what() << endl; return EXIT_FAILURE; }