updated docs

This commit is contained in:
Davis King 2021-03-28 09:17:30 -04:00
parent a44ddd7452
commit f152a78a56
5 changed files with 107 additions and 2 deletions

View File

@ -76,6 +76,8 @@
<item>count_steps_without_decrease_robust</item> <item>count_steps_without_decrease_robust</item>
<item>count_steps_without_decrease</item> <item>count_steps_without_decrease</item>
<item>count_steps_without_increase</item> <item>count_steps_without_increase</item>
<item>probability_values_are_increasing</item>
<item>probability_values_are_increasing_robust</item>
<item>binomial_random_vars_are_different</item> <item>binomial_random_vars_are_different</item>
<item>event_correlation</item> <item>event_correlation</item>
@ -752,6 +754,32 @@
</description> </description>
</component> </component>
<!-- ************************************************************************* -->
<component>
<name>probability_values_are_increasing</name>
<file>dlib/statistics/running_gradient.h</file>
<spec_file link="true">dlib/statistics/running_gradient_abstract.h</spec_file>
<description>
Given a potentially noisy time series, this function returns the probability that those
values are increasing in magnitude.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>probability_values_are_increasing_robust</name>
<file>dlib/statistics/running_gradient.h</file>
<spec_file link="true">dlib/statistics/running_gradient_abstract.h</spec_file>
<description>
This function behaves just like <a
href="#probability_values_are_increasing">probability_values_are_increasing</a> except
that it ignores times series values that are anomalously large. This makes it
robust to sudden noisy but transient spikes in the time series values.
</description>
</component>
<!-- ************************************************************************* --> <!-- ************************************************************************* -->
<component> <component>

View File

@ -163,6 +163,10 @@
<name>tanh</name> <name>tanh</name>
<link>dlib/matrix/matrix_math_functions_abstract.h.html#tanh</link> <link>dlib/matrix/matrix_math_functions_abstract.h.html#tanh</link>
</item> </item>
<item>
<name>soft_max</name>
<link>dlib/matrix/matrix_math_functions_abstract.h.html#soft_max</link>
</item>
</sub> </sub>
</item> </item>
<item nolink="true"> <item nolink="true">
@ -549,6 +553,10 @@
<name>pointwise_multiply</name> <name>pointwise_multiply</name>
<link>dlib/matrix/matrix_utilities_abstract.h.html#pointwise_multiply</link> <link>dlib/matrix/matrix_utilities_abstract.h.html#pointwise_multiply</link>
</item> </item>
<item>
<name>pointwise_pow</name>
<link>dlib/matrix/matrix_utilities_abstract.h.html#pointwise_pow</link>
</item>
<item> <item>
<name>join_rows</name> <name>join_rows</name>
<link>dlib/matrix/matrix_utilities_abstract.h.html#join_rows</link> <link>dlib/matrix/matrix_utilities_abstract.h.html#join_rows</link>

View File

@ -156,6 +156,10 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<name>scale</name> <name>scale</name>
<link>dlib/dnn/layers_abstract.h.html#scale_</link> <link>dlib/dnn/layers_abstract.h.html#scale_</link>
</item> </item>
<item>
<name>scale_prev</name>
<link>dlib/dnn/layers_abstract.h.html#scale_prev_</link>
</item>
<item> <item>
<name>extract</name> <name>extract</name>
<link>dlib/dnn/layers_abstract.h.html#extract_</link> <link>dlib/dnn/layers_abstract.h.html#extract_</link>
@ -180,6 +184,10 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<name>l2normalize</name> <name>l2normalize</name>
<link>dlib/dnn/layers_abstract.h.html#l2normalize_</link> <link>dlib/dnn/layers_abstract.h.html#l2normalize_</link>
</item> </item>
<item>
<name>layer_norm</name>
<link>dlib/dnn/layers_abstract.h.html#layer_norm_</link>
</item>
<item> <item>
<name>dropout</name> <name>dropout</name>
<link>dlib/dnn/layers_abstract.h.html#dropout_</link> <link>dlib/dnn/layers_abstract.h.html#dropout_</link>
@ -216,6 +224,10 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<name>relu</name> <name>relu</name>
<link>dlib/dnn/layers_abstract.h.html#relu_</link> <link>dlib/dnn/layers_abstract.h.html#relu_</link>
</item> </item>
<item>
<name>gelu</name>
<link>dlib/dnn/layers_abstract.h.html#gelu_</link>
</item>
<item> <item>
<name>concat</name> <name>concat</name>
<link>dlib/dnn/layers_abstract.h.html#concat_</link> <link>dlib/dnn/layers_abstract.h.html#concat_</link>
@ -325,6 +337,10 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<name>loss_mean_squared_per_channel_and_pixel</name> <name>loss_mean_squared_per_channel_and_pixel</name>
<link>dlib/dnn/loss_abstract.h.html#loss_mean_squared_per_channel_and_pixel_</link> <link>dlib/dnn/loss_abstract.h.html#loss_mean_squared_per_channel_and_pixel_</link>
</item> </item>
<item>
<name>loss_multibinary_log</name>
<link>dlib/dnn/loss_abstract.h.html#loss_multibinary_log_</link>
</item>
</sub> </sub>
</item> </item>
<item nolink="true"> <item nolink="true">
@ -474,6 +490,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<name>Data IO</name> <name>Data IO</name>
<item>load_image_dataset_metadata</item> <item>load_image_dataset_metadata</item>
<item>load_image_dataset</item> <item>load_image_dataset</item>
<item>load_cifar_10_dataset</item>
<item>save_image_dataset_metadata</item> <item>save_image_dataset_metadata</item>
<item>load_libsvm_formatted_data</item> <item>load_libsvm_formatted_data</item>
<item>save_libsvm_formatted_data</item> <item>save_libsvm_formatted_data</item>
@ -2868,6 +2885,17 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component> </component>
<!-- ************************************************************************* -->
<component>
<name>load_cifar_10_dataset</name>
<file>dlib/data_io.h</file>
<spec_file link="true">dlib/data_io/cifar_abstract.h</spec_file>
<description>
Loads the <a href="https://www.cs.toronto.edu/~kriz/cifar.html">CIFAR-10</a> from disk.
</description>
</component>
<!-- ************************************************************************* --> <!-- ************************************************************************* -->
<component> <component>

View File

@ -10,7 +10,40 @@
<!-- ************************************************************************************** --> <!-- ************************************************************************************** -->
<current> <current>
New Features and Improvements:
- Deep learning tooling:
- Added loss_multibinary_log_
- Added scale_prev layer
- Various ease of use improvements to the deep learning tooling, such as improved layer
visitors and increased DNN training stability.
- Added CUDA implementation for loss_multiclass_log_per_pixel_weighted.
- Add GELU activation layer
- Add Layer Normalization
- Add CIFAR-10 dataset loader: load_cifar_10_dataset()
- Add probability_values_are_increasing() and probability_values_are_increasing_robust().
- Expanded list of serializable types and added DLIB_DEFINE_DEFAULT_SERIALIZATION, a macro that
lets you make a class serializable with a single simple declaration.
- Added exponential and Weibull distributions to dlib::rand.
- For dlib::matrix:
- Added soft_max() and pointwise_pow()
- The FFT methods now support arbitrary sized FFTs and are more performant.
- Added user definable stopping condition support to find_min_global() and find_max_global().
Non-Backwards Compatible Changes:
- Rename POSIX macro to DLIB_POSIX to avoid name clashes with some libraries.
- Dropped support for gcc 4.8.
Bug fixes:
- Fixed bug in loss_mmod that degraded the quality of bounding box regression. Now
bounding box regression works a lot better.
- Fixes for code not compiling in various environments and support newer CUDA tooling.
</current>
<!-- ************************************************************************************** -->
<old name="19.21" date="Aug 08, 2020">
New Features and Improvements: New Features and Improvements:
- Added support for cuDNN 8.0. - Added support for cuDNN 8.0.
- Added support for CUDA in Python 3.8 on Windows. - Added support for CUDA in Python 3.8 on Windows.
@ -24,7 +57,7 @@ Bug fixes:
with CUDA enabled or who are using windows. with CUDA enabled or who are using windows.
- Fix random forest regression not doing quite the right thing. - Fix random forest regression not doing quite the right thing.
</current> </old>
<!-- ************************************************************************************** --> <!-- ************************************************************************************** -->

View File

@ -138,7 +138,7 @@
<term file="dlib/dnn/loss_abstract.h.html" name="loss_multiclass_log_per_pixel_" include="dlib/dnn.h"/> <term file="dlib/dnn/loss_abstract.h.html" name="loss_multiclass_log_per_pixel_" include="dlib/dnn.h"/>
<term file="dlib/dnn/loss_abstract.h.html" name="loss_multiclass_log_per_pixel_weighted_" include="dlib/dnn.h"/> <term file="dlib/dnn/loss_abstract.h.html" name="loss_multiclass_log_per_pixel_weighted_" include="dlib/dnn.h"/>
<term file="dlib/dnn/loss_abstract.h.html" name="loss_mean_squared_per_channel_and_pixel_" include="dlib/dnn.h"/> <term file="dlib/dnn/loss_abstract.h.html" name="loss_mean_squared_per_channel_and_pixel_" include="dlib/dnn.h"/>
<term file="dlib/dnn/loss_abstract.h.html" name="loss_mean_squared_per_channel_" include="dlib/dnn.h"/> <term file="dlib/dnn/loss_abstract.h.html" name="loss_multibinary_log_" include="dlib/dnn.h"/>
<term file="dlib/dnn/loss_abstract.h.html" name="loss_ranking_" include="dlib/dnn.h"/> <term file="dlib/dnn/loss_abstract.h.html" name="loss_ranking_" include="dlib/dnn.h"/>
<term file="dlib/dnn/loss_abstract.h.html" name="loss_dot_" include="dlib/dnn.h"/> <term file="dlib/dnn/loss_abstract.h.html" name="loss_dot_" include="dlib/dnn.h"/>
<term file="dlib/dnn/loss_abstract.h.html" name="loss_epsilon_insensitive_" include="dlib/dnn.h"/> <term file="dlib/dnn/loss_abstract.h.html" name="loss_epsilon_insensitive_" include="dlib/dnn.h"/>
@ -164,7 +164,9 @@
<term file="dlib/dnn/layers_abstract.h.html" name="upsample_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="upsample_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="cont_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="cont_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="scale_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="scale_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="scale_prev_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="l2normalize_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="l2normalize_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="layer_norm_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="dropout_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="dropout_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="multiply_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="multiply_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="bn_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="bn_" include="dlib/dnn.h"/>
@ -172,6 +174,7 @@
<term file="dlib/dnn/layers_abstract.h.html" name="max_pool_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="max_pool_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="avg_pool_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="avg_pool_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="relu_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="relu_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="gelu_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="leaky_relu_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="leaky_relu_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="mish_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="mish_" include="dlib/dnn.h"/>
<term file="dlib/dnn/layers_abstract.h.html" name="prelu_" include="dlib/dnn.h"/> <term file="dlib/dnn/layers_abstract.h.html" name="prelu_" include="dlib/dnn.h"/>
@ -460,6 +463,8 @@
<term file="dlib/statistics/running_gradient_abstract.h.html" name="probability_gradient_less_than" include="dlib/statistics/running_gradient.h"/> <term file="dlib/statistics/running_gradient_abstract.h.html" name="probability_gradient_less_than" include="dlib/statistics/running_gradient.h"/>
<term file="algorithms.html" name="count_steps_without_decrease_robust" include="dlib/statistics/running_gradient.h"/> <term file="algorithms.html" name="count_steps_without_decrease_robust" include="dlib/statistics/running_gradient.h"/>
<term file="algorithms.html" name="count_steps_without_decrease" include="dlib/statistics/running_gradient.h"/> <term file="algorithms.html" name="count_steps_without_decrease" include="dlib/statistics/running_gradient.h"/>
<term file="algorithms.html" name="probability_values_are_increasing_robust" include="dlib/statistics/running_gradient.h"/>
<term file="algorithms.html" name="probability_values_are_increasing" include="dlib/statistics/running_gradient.h"/>
<term file="algorithms.html" name="count_steps_without_increase" include="dlib/statistics/running_gradient.h"/> <term file="algorithms.html" name="count_steps_without_increase" include="dlib/statistics/running_gradient.h"/>
<term file="algorithms.html" name="running_scalar_covariance" include="dlib/statistics.h"/> <term file="algorithms.html" name="running_scalar_covariance" include="dlib/statistics.h"/>
<term file="algorithms.html" name="mean_sign_agreement" include="dlib/statistics.h"/> <term file="algorithms.html" name="mean_sign_agreement" include="dlib/statistics.h"/>
@ -497,6 +502,7 @@
<term link="ml.html#load_image_dataset_metadata" name="image_dataset_metadata" include="dlib/data_io.h"/> <term link="ml.html#load_image_dataset_metadata" name="image_dataset_metadata" include="dlib/data_io.h"/>
<term file="ml.html" name="load_image_dataset_metadata" include="dlib/data_io.h"/> <term file="ml.html" name="load_image_dataset_metadata" include="dlib/data_io.h"/>
<term file="ml.html" name="load_image_dataset" include="dlib/data_io.h"/> <term file="ml.html" name="load_image_dataset" include="dlib/data_io.h"/>
<term file="ml.html" name="load_cifar_10_dataset" include="dlib/data_io.h"/>
<term file="ml.html" name="save_image_dataset_metadata" include="dlib/data_io.h"/> <term file="ml.html" name="save_image_dataset_metadata" include="dlib/data_io.h"/>
<term file="ml.html" name="load_libsvm_formatted_data" include="dlib/data_io.h"/> <term file="ml.html" name="load_libsvm_formatted_data" include="dlib/data_io.h"/>
<term file="ml.html" name="save_libsvm_formatted_data" include="dlib/data_io.h"/> <term file="ml.html" name="save_libsvm_formatted_data" include="dlib/data_io.h"/>
@ -714,6 +720,7 @@
<term file="dlib/matrix/matrix_math_functions_abstract.h.html" name="round_zeros" include="dlib/matrix.h"/> <term file="dlib/matrix/matrix_math_functions_abstract.h.html" name="round_zeros" include="dlib/matrix.h"/>
<term file="dlib/matrix/matrix_math_functions_abstract.h.html" name="complex_matrix" include="dlib/matrix.h"/> <term file="dlib/matrix/matrix_math_functions_abstract.h.html" name="complex_matrix" include="dlib/matrix.h"/>
<term file="dlib/matrix/matrix_math_functions_abstract.h.html" name="normalize" include="dlib/matrix.h"/> <term file="dlib/matrix/matrix_math_functions_abstract.h.html" name="normalize" include="dlib/matrix.h"/>
<term file="dlib/matrix/matrix_math_functions_abstract.h.html" name="soft_max" include="dlib/matrix.h"/>
<term file="dlib/matrix/matrix_math_functions_abstract.h.html" name="abs" include="dlib/matrix.h"/> <term file="dlib/matrix/matrix_math_functions_abstract.h.html" name="abs" include="dlib/matrix.h"/>
<term file="dlib/matrix/matrix_math_functions_abstract.h.html" name="acos" include="dlib/matrix.h"/> <term file="dlib/matrix/matrix_math_functions_abstract.h.html" name="acos" include="dlib/matrix.h"/>
@ -841,6 +848,7 @@
<term file="dlib/matrix/matrix_utilities_abstract.h.html" name="min_pointwise" include="dlib/matrix.h"/> <term file="dlib/matrix/matrix_utilities_abstract.h.html" name="min_pointwise" include="dlib/matrix.h"/>
<term file="dlib/matrix/matrix_utilities_abstract.h.html" name="max_pointwise" include="dlib/matrix.h"/> <term file="dlib/matrix/matrix_utilities_abstract.h.html" name="max_pointwise" include="dlib/matrix.h"/>
<term file="dlib/matrix/matrix_utilities_abstract.h.html" name="pointwise_multiply" include="dlib/matrix.h"/> <term file="dlib/matrix/matrix_utilities_abstract.h.html" name="pointwise_multiply" include="dlib/matrix.h"/>
<term file="dlib/matrix/matrix_utilities_abstract.h.html" name="pointwise_pow" include="dlib/matrix.h"/>
<term file="dlib/matrix/matrix_utilities_abstract.h.html" name="join_rows" include="dlib/matrix.h"/> <term file="dlib/matrix/matrix_utilities_abstract.h.html" name="join_rows" include="dlib/matrix.h"/>
<term file="dlib/matrix/matrix_utilities_abstract.h.html" name="join_cols" include="dlib/matrix.h"/> <term file="dlib/matrix/matrix_utilities_abstract.h.html" name="join_cols" include="dlib/matrix.h"/>
<term file="dlib/matrix/matrix_utilities_abstract.h.html" name="equal" include="dlib/matrix.h"/> <term file="dlib/matrix/matrix_utilities_abstract.h.html" name="equal" include="dlib/matrix.h"/>