More comments

This commit is contained in:
Davis King 2017-08-27 09:11:49 -04:00
parent 54de7a8546
commit efb1d83dd3
2 changed files with 74 additions and 22 deletions

View File

@ -1,11 +1,27 @@
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This example shows how to run a CNN based vehicle detector using dlib. The
example loads a pretrained model and uses it to find the rear ends of cars in
images. We will also visualize some of the detector's processing steps by
plotting various intermediate images on the screen. Viewing these can help
understand how the detector works.
The model used by this example was trained by the dnn_mmod_train_find_cars_ex.cpp
example. Also, since this is a CNN, you really should use a GPU to get the
best execution speed. For instance, when run on a NVIDIA 1080ti, this
detector runs at 39fps when run on the provided test image. That's about an
order of magnitude faster than when run on the CPU.
Users who are just learning about dlib's deep learning API should read
the dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp examples to learn
how the API works. For an introduction to the object detection method you
should read dnn_mmod_ex.cpp.
*/
#include <iostream>
#include <dlib/dnn.h>
#include <dlib/data_io.h>
#include <dlib/gui_widgets.h>
#include <dlib/dir_nav.h>
#include <dlib/time_this.h>
#include <dlib/image_io.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_processing.h>
@ -59,35 +75,62 @@ int main() try
cin.get();
// Now let's look at how the detector works. The top level processing steps look like:
// 1. Create an image pyramid and pack the pyramid into one big image. We call this
// the "tiled pyramid image".
// 2. Run the tiled pyramid image through the CNN. The CNN outputs a new image where
// bright pixels in the output image indicate the presence of cars.
// 3. Find pixels in the CNN output image with a value > 0. Those locations are your
// preliminary car detections.
// 4. Perform non-maximum suppression on the preliminary detections to produce the
// final output.
//
// We will be plotting the images from steps 1 and 2 so you can visualize what's
// happening. For the CNN output image, we will use the jet colormap so that "bright"
// outputs, i.e. pixels with big values, appear in red and "dim" outputs appear as a
// cold blue color. To do this we pick a range of CNN output values for the color
// mapping. The specific values don't matter. They are just selected to give a nice
// looking output image.
const float lower = -2.5;
const float upper = 0.0;
cout << "jet color mapping range: lower="<< lower << " upper="<< upper << endl;
// Create a tiled image pyramid and display it on the screen.
// Create a tiled pyramid image and display it on the screen.
std::vector<rectangle> rects;
matrix<rgb_pixel> tiled_img;
create_tiled_pyramid<std::remove_reference<decltype(input_layer(net))>::type::pyramid_type>(img,
tiled_img, rects, input_layer(net).get_pyramid_padding(),
input_layer(net).get_pyramid_outer_padding());
image_window winpyr(tiled_img, "Tiled image pyramid");
image_window winpyr(tiled_img, "Tiled pyramid image");
// This CNN detector represents a sliding window detector with 3 sliding windows, one
// for each aspect ratio of vehicle box. The aspect ratio of a detection is determined
// by which channel in the output image triggers the detection. Here we are just going
// to max pool the channels together to get one final image for our display. In this
// image, a pixel will be bright if any of the sliding window detectors thinks there is
// a car at that location.
cout << "Number of channels in final tensor image: " << net.subnet().get_output().k() << endl;
matrix<float> network_output = image_plane(net.subnet().get_output(),0,0);
for (long k = 1; k < net.subnet().get_output().k(); ++k)
network_output = max_pointwise(network_output, image_plane(net.subnet().get_output(),0,k));
const double v0_scale = img.nc()/(double)network_output.nc();
resize_image(v0_scale, network_output);
// We will also upsample the CNN output image. The CNN we defined has an 8x
// downsampling layer at the beginning. In the code below we are going to overlay this
// CNN output image on top of the raw input image. To make that look nice it helps to
// upsample the CNN output image back to the same resolution as the input image, which
// we do here.
const double network_output_scale = img.nc()/(double)network_output.nc();
resize_image(network_output_scale, network_output);
const float lower = -2.5;// min(network_output);
const float upper = 0.0;// max(network_output);
cout << "jet color mapping range: lower="<< lower << " upper="<< upper << endl;
// Display the final layer as a color image
// Display the network's output as a color image.
image_window win_output(jet(network_output, upper, lower), "Output tensor from the network");
// Overlay network_output on top of the tiled image pyramid and display it.
// Also, overlay network_output on top of the tiled image pyramid and display it.
matrix<rgb_pixel> tiled_img_sal = tiled_img;
for (long r = 0; r < tiled_img_sal.nr(); ++r)
{
@ -95,10 +138,12 @@ int main() try
{
dpoint tmp(c,r);
tmp = input_tensor_to_output_tensor(net, tmp);
tmp = point(v0_scale*tmp);
tmp = point(network_output_scale*tmp);
if (get_rect(network_output).contains(tmp))
{
float val = network_output(tmp.y(),tmp.x());
// alpha blend the network output pixel with the RGB image to make our
// overlay.
rgb_alpha_pixel p;
assign_pixel(p , colormap_jet(val,lower,upper));
p.alpha = 120;
@ -106,12 +151,20 @@ int main() try
}
}
}
// If you look at this image you can see that the vehicles get bright red blobs on
// them. That's the CNN saying "there is a car here!". You will also notice that
// there is a certain scale it finds cars at. They have to be not too big or too
// small, which is why we have an image pyramid. The pyramid allows us to find cars of
// all scales.
image_window win_pyr_sal(tiled_img_sal, "Saliency on image pyramid");
// Now collapse the pyramid scales into the original image
// Finally, we can collapse the pyramid back into the original image. The CNN doesn't
// actually do this step, since it's enough to threshold the tiled pyramid image to get
// the detections. However, it makes a nice visualization and clearly indicates that
// the detector is firing for all the cars.
matrix<float> collapsed_saliency(img.nr(), img.nc());
resizable_tensor input_tensor;
input_layer(net).to_tensor(&img, &img+1, input_tensor);
@ -125,10 +178,11 @@ int main() try
float max_sal = -1e30;
for (double scale = 1; scale > 0.2; scale *= 5.0/6.0)
{
// map from input image coordinates to tiled pyramid and then to output
// tensor coordinates.
// Map from input image coordinates to tiled pyramid coordinates.
dpoint tmp = center(input_layer(net).image_space_to_tensor_space(input_tensor,scale, drectangle(dpoint(c,r))));
tmp = point(v0_scale*input_tensor_to_output_tensor(net, tmp));
// Now map from pyramid coordinates to network_output coordinates.
tmp = point(network_output_scale*input_tensor_to_output_tensor(net, tmp));
if (get_rect(network_output).contains(tmp))
{
float val = network_output(tmp.y(),tmp.x());

View File

@ -25,8 +25,6 @@
#include <iostream>
#include <dlib/dnn.h>
#include <dlib/data_io.h>
#include <dlib/dir_nav.h>
#include <dlib/time_this.h>
using namespace std;
using namespace dlib;