mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
updated the docs
--HG-- extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403191
This commit is contained in:
parent
9fb35897b7
commit
ea35161a94
@ -32,13 +32,19 @@
|
|||||||
<name>Optimization</name>
|
<name>Optimization</name>
|
||||||
<sub>
|
<sub>
|
||||||
<item>derivative</item>
|
<item>derivative</item>
|
||||||
|
<item>negate_function</item>
|
||||||
<item>make_line_search_function</item>
|
<item>make_line_search_function</item>
|
||||||
<item>poly_min_extrap</item>
|
<item>poly_min_extrap</item>
|
||||||
<item>line_search</item>
|
<item>line_search</item>
|
||||||
<item>find_min_quasi_newton</item>
|
<item>find_min</item>
|
||||||
<item>find_min_conjugate_gradient</item>
|
<item>find_min_using_approximate_derivatives</item>
|
||||||
<item>find_min_quasi_newton2</item>
|
<item>find_max</item>
|
||||||
<item>find_min_conjugate_gradient2</item>
|
<item>find_max_using_approximate_derivatives</item>
|
||||||
|
|
||||||
|
<item>cg_search_strategy</item>
|
||||||
|
<item>bfgs_search_strategy</item>
|
||||||
|
<item>lbfgs_search_strategy</item>
|
||||||
|
<item>objective_delta_stop_strategy</item>
|
||||||
</sub>
|
</sub>
|
||||||
</item>
|
</item>
|
||||||
<item nolink="true">
|
<item nolink="true">
|
||||||
@ -129,12 +135,28 @@
|
|||||||
<!-- ************************************************************************* -->
|
<!-- ************************************************************************* -->
|
||||||
|
|
||||||
<component>
|
<component>
|
||||||
<name>make_line_search_function</name>
|
<name>negate_function</name>
|
||||||
<file>dlib/optimization.h</file>
|
<file>dlib/optimization.h</file>
|
||||||
<spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
|
<spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
|
||||||
|
<description>
|
||||||
|
This is a function that takes another function as input and returns
|
||||||
|
a function object that computes the negation of the input function.
|
||||||
|
</description>
|
||||||
|
|
||||||
|
</component>
|
||||||
|
|
||||||
|
|
||||||
|
<!-- ************************************************************************* -->
|
||||||
|
|
||||||
|
<component>
|
||||||
|
<name>make_line_search_function</name>
|
||||||
|
<file>dlib/optimization.h</file>
|
||||||
|
<spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
|
||||||
<description>
|
<description>
|
||||||
This is a function that takes another function f(x) as input and returns
|
This is a function that takes another function f(x) as input and returns
|
||||||
a function object l(z) = f(start + z*direction).
|
a function object l(z) = f(start + z*direction). It is useful for
|
||||||
|
turning multi-variable functions into single-variable functions for
|
||||||
|
use with the <a href="#line_search">line_search</a> routine.
|
||||||
</description>
|
</description>
|
||||||
|
|
||||||
</component>
|
</component>
|
||||||
@ -145,7 +167,7 @@
|
|||||||
<component>
|
<component>
|
||||||
<name>poly_min_extrap</name>
|
<name>poly_min_extrap</name>
|
||||||
<file>dlib/optimization.h</file>
|
<file>dlib/optimization.h</file>
|
||||||
<spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
|
<spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
|
||||||
<description>
|
<description>
|
||||||
This function finds the 3rd degree polynomial that interpolates a
|
This function finds the 3rd degree polynomial that interpolates a
|
||||||
set of points and returns you the minimum of that polynomial.
|
set of points and returns you the minimum of that polynomial.
|
||||||
@ -158,7 +180,7 @@
|
|||||||
<component>
|
<component>
|
||||||
<name>line_search</name>
|
<name>line_search</name>
|
||||||
<file>dlib/optimization.h</file>
|
<file>dlib/optimization.h</file>
|
||||||
<spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
|
<spec_file link="true">dlib/optimization/optimization_line_search_abstract.h</spec_file>
|
||||||
<description>
|
<description>
|
||||||
Performs a line search on a given function and returns the input
|
Performs a line search on a given function and returns the input
|
||||||
that makes the function significantly smaller.
|
that makes the function significantly smaller.
|
||||||
@ -168,14 +190,24 @@
|
|||||||
|
|
||||||
|
|
||||||
<!-- ************************************************************************* -->
|
<!-- ************************************************************************* -->
|
||||||
|
|
||||||
<component>
|
<component>
|
||||||
<name>find_min_quasi_newton</name>
|
<name>cg_search_strategy</name>
|
||||||
<file>dlib/optimization.h</file>
|
<file>dlib/optimization.h</file>
|
||||||
<spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
|
<spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
|
||||||
<description>
|
<description>
|
||||||
Performs an unconstrained minimization of the potentially nonlinear function f() using the
|
This object represents a strategy for determining which direction
|
||||||
BFGS quasi newton method.
|
a <a href="#line_search">line search</a> should be carried out along. This particular object
|
||||||
|
is an implementation of the Polak-Ribiere conjugate gradient method
|
||||||
|
for determining this direction.
|
||||||
|
|
||||||
|
<p>
|
||||||
|
This method uses an amount of memory that is linear in the number
|
||||||
|
of variables to be optimized. So it is capable of handling problems
|
||||||
|
with a very large number of variables. However, it is generally
|
||||||
|
not as good as the L-BFGS algorithm (see the
|
||||||
|
<a href="#lbfgs_search_strategy">lbfgs_search_strategy</a> class).
|
||||||
|
</p>
|
||||||
</description>
|
</description>
|
||||||
<examples>
|
<examples>
|
||||||
<example>optimization_ex.cpp.html</example>
|
<example>optimization_ex.cpp.html</example>
|
||||||
@ -186,12 +218,21 @@
|
|||||||
<!-- ************************************************************************* -->
|
<!-- ************************************************************************* -->
|
||||||
|
|
||||||
<component>
|
<component>
|
||||||
<name>find_min_conjugate_gradient</name>
|
<name>bfgs_search_strategy</name>
|
||||||
<file>dlib/optimization.h</file>
|
<file>dlib/optimization.h</file>
|
||||||
<spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
|
<spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
|
||||||
<description>
|
<description>
|
||||||
Performs an unconstrained minimization of the potentially nonlinear function f() using a
|
This object represents a strategy for determining which direction
|
||||||
conjugate gradient method.
|
a <a href="#line_search">line search</a> should be carried out along. This particular object
|
||||||
|
is an implementation of the BFGS quasi-newton method for determining
|
||||||
|
this direction.
|
||||||
|
|
||||||
|
<p>
|
||||||
|
This method uses an amount of memory that is quadratic in the number
|
||||||
|
of variables to be optimized. It is generally very effective but
|
||||||
|
if your problem has a very large number of variables then it isn't
|
||||||
|
appropriate. Instead You should try the <a href="#lbfgs_search_strategy">lbfgs_search_strategy</a>.
|
||||||
|
</p>
|
||||||
</description>
|
</description>
|
||||||
<examples>
|
<examples>
|
||||||
<example>optimization_ex.cpp.html</example>
|
<example>optimization_ex.cpp.html</example>
|
||||||
@ -202,13 +243,20 @@
|
|||||||
<!-- ************************************************************************* -->
|
<!-- ************************************************************************* -->
|
||||||
|
|
||||||
<component>
|
<component>
|
||||||
<name>find_min_quasi_newton2</name>
|
<name>lbfgs_search_strategy</name>
|
||||||
<file>dlib/optimization.h</file>
|
<file>dlib/optimization.h</file>
|
||||||
<spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
|
<spec_file link="true">dlib/optimization/optimization_search_strategies_abstract.h</spec_file>
|
||||||
<description>
|
<description>
|
||||||
Performs an unconstrained minimization of the potentially nonlinear function f() using the
|
This object represents a strategy for determining which direction
|
||||||
BFGS quasi newton method. This version doesn't take a gradient function of f()
|
a <a href="#line_search">line search</a> should be carried out along. This particular object
|
||||||
but instead numerically approximates the gradient.
|
is an implementation of the L-BFGS quasi-newton method for determining
|
||||||
|
this direction.
|
||||||
|
|
||||||
|
<p>
|
||||||
|
This method uses an amount of memory that is linear in the number
|
||||||
|
of variables to be optimized. This makes it an excellent method
|
||||||
|
to use when an optimization problem has a large number of variables.
|
||||||
|
</p>
|
||||||
</description>
|
</description>
|
||||||
<examples>
|
<examples>
|
||||||
<example>optimization_ex.cpp.html</example>
|
<example>optimization_ex.cpp.html</example>
|
||||||
@ -219,13 +267,15 @@
|
|||||||
<!-- ************************************************************************* -->
|
<!-- ************************************************************************* -->
|
||||||
|
|
||||||
<component>
|
<component>
|
||||||
<name>find_min_conjugate_gradient2</name>
|
<name>objective_delta_stop_strategy</name>
|
||||||
<file>dlib/optimization.h</file>
|
<file>dlib/optimization.h</file>
|
||||||
<spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
|
<spec_file link="true">dlib/optimization/optimization_stop_strategies_abstract.h</spec_file>
|
||||||
<description>
|
<description>
|
||||||
Performs an unconstrained minimization of the potentially nonlinear function f() using a
|
This object represents a strategy for deciding if an optimization
|
||||||
conjugate gradient method. This version doesn't take a gradient function of f()
|
algorithm should terminate. This particular object looks at the
|
||||||
but instead numerically approximates the gradient.
|
change in the objective function from one iteration to the next and
|
||||||
|
bases its decision on how large this change is. If the change
|
||||||
|
is below a user given threshold then the search stops.
|
||||||
</description>
|
</description>
|
||||||
<examples>
|
<examples>
|
||||||
<example>optimization_ex.cpp.html</example>
|
<example>optimization_ex.cpp.html</example>
|
||||||
@ -233,6 +283,68 @@
|
|||||||
|
|
||||||
</component>
|
</component>
|
||||||
|
|
||||||
|
<!-- ************************************************************************* -->
|
||||||
|
|
||||||
|
<component>
|
||||||
|
<name>find_min</name>
|
||||||
|
<file>dlib/optimization.h</file>
|
||||||
|
<spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
|
||||||
|
<description>
|
||||||
|
Performs an unconstrained minimization of a nonlinear function using
|
||||||
|
some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
|
||||||
|
</description>
|
||||||
|
<examples>
|
||||||
|
<example>optimization_ex.cpp.html</example>
|
||||||
|
</examples>
|
||||||
|
|
||||||
|
</component>
|
||||||
|
|
||||||
|
<!-- ************************************************************************* -->
|
||||||
|
|
||||||
|
<component>
|
||||||
|
<name>find_min_using_approximate_derivatives</name>
|
||||||
|
<file>dlib/optimization.h</file>
|
||||||
|
<spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
|
||||||
|
<description>
|
||||||
|
Performs an unconstrained minimization of a nonlinear function using
|
||||||
|
some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
|
||||||
|
This version doesn't take a gradient function but instead numerically approximates
|
||||||
|
the gradient.
|
||||||
|
</description>
|
||||||
|
<examples>
|
||||||
|
<example>optimization_ex.cpp.html</example>
|
||||||
|
</examples>
|
||||||
|
|
||||||
|
</component>
|
||||||
|
|
||||||
|
<!-- ************************************************************************* -->
|
||||||
|
|
||||||
|
<component>
|
||||||
|
<name>find_max</name>
|
||||||
|
<file>dlib/optimization.h</file>
|
||||||
|
<spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
|
||||||
|
<description>
|
||||||
|
Performs an unconstrained maximization of a nonlinear function using
|
||||||
|
some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
|
||||||
|
</description>
|
||||||
|
|
||||||
|
</component>
|
||||||
|
|
||||||
|
<!-- ************************************************************************* -->
|
||||||
|
|
||||||
|
<component>
|
||||||
|
<name>find_max_using_approximate_derivatives</name>
|
||||||
|
<file>dlib/optimization.h</file>
|
||||||
|
<spec_file link="true">dlib/optimization/optimization_abstract.h</spec_file>
|
||||||
|
<description>
|
||||||
|
Performs an unconstrained maximization of a nonlinear function using
|
||||||
|
some search strategy (e.g. <a href="#bfgs_search_strategy">bfgs_search_strategy</a>).
|
||||||
|
This version doesn't take a gradient function but instead numerically approximates
|
||||||
|
the gradient.
|
||||||
|
</description>
|
||||||
|
|
||||||
|
</component>
|
||||||
|
|
||||||
<!-- ************************************************************************* -->
|
<!-- ************************************************************************* -->
|
||||||
|
|
||||||
<component checked="true">
|
<component checked="true">
|
||||||
|
@ -109,7 +109,9 @@
|
|||||||
<a href="dlib/matrix/matrix_utilities_abstract.h.html#trans">transpose</a>,
|
<a href="dlib/matrix/matrix_utilities_abstract.h.html#trans">transpose</a>,
|
||||||
<a href="dlib/matrix/matrix_math_functions_abstract.h.html#sin">trig functions</a>, etc...</li>
|
<a href="dlib/matrix/matrix_math_functions_abstract.h.html#sin">trig functions</a>, etc...</li>
|
||||||
<li>Unconstrained non-linear optimization algorithms such as
|
<li>Unconstrained non-linear optimization algorithms such as
|
||||||
<a href="algorithms.html#find_min_conjugate_gradient">conjugate gradient</a> and <a href="algorithms.html#find_min_quasi_newton">quasi newton</a> techniques</li>
|
<a href="algorithms.html#cg_search_strategy">conjugate gradient</a>,
|
||||||
|
<a href="algorithms.html#bfgs_search_strategy">BFGS</a>, and
|
||||||
|
<a href="algorithms.html#lbfgs_search_strategy">L-BFGS</a> techniques</li>
|
||||||
<li>A <a href="algorithms.html#bigint">big integer</a> object</li>
|
<li>A <a href="algorithms.html#bigint">big integer</a> object</li>
|
||||||
<li>A <a href="algorithms.html#rand">random number</a> object</li>
|
<li>A <a href="algorithms.html#rand">random number</a> object</li>
|
||||||
</ul>
|
</ul>
|
||||||
|
@ -33,10 +33,15 @@
|
|||||||
<term file="algorithms.html" name="make_line_search_function"/>
|
<term file="algorithms.html" name="make_line_search_function"/>
|
||||||
<term file="algorithms.html" name="poly_min_extrap"/>
|
<term file="algorithms.html" name="poly_min_extrap"/>
|
||||||
<term file="algorithms.html" name="line_search"/>
|
<term file="algorithms.html" name="line_search"/>
|
||||||
<term file="algorithms.html" name="find_min_quasi_newton"/>
|
<term file="algorithms.html" name="find_min"/>
|
||||||
<term file="algorithms.html" name="find_min_conjugate_gradient"/>
|
<term file="algorithms.html" name="find_min_using_approximate_derivatives"/>
|
||||||
<term file="algorithms.html" name="find_min_quasi_newton2"/>
|
<term file="algorithms.html" name="find_max"/>
|
||||||
<term file="algorithms.html" name="find_min_conjugate_gradient2"/>
|
<term file="algorithms.html" name="find_max_using_approximate_derivatives"/>
|
||||||
|
<term file="algorithms.html" name="objective_delta_stop_strategy"/>
|
||||||
|
<term file="algorithms.html" name="negate_function"/>
|
||||||
|
<term file="algorithms.html" name="cg_search_strategy"/>
|
||||||
|
<term file="algorithms.html" name="bfgs_search_strategy"/>
|
||||||
|
<term file="algorithms.html" name="lbfgs_search_strategy"/>
|
||||||
|
|
||||||
<term file="bayes.html" name="set_node_value"/>
|
<term file="bayes.html" name="set_node_value"/>
|
||||||
<term file="bayes.html" name="node_value"/>
|
<term file="bayes.html" name="node_value"/>
|
||||||
|
Loading…
Reference in New Issue
Block a user