mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
Minor cleanup
This commit is contained in:
parent
8b6cd0080c
commit
d93a02e803
@ -1,17 +1,15 @@
|
||||
// The contents of this file are in the public domain. See
|
||||
// LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
||||
|
||||
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
||||
/*
|
||||
|
||||
This example demonstrates the usage of the numerical quadrature function
|
||||
integrate_function_adapt_simpson. This function takes as input a single variable
|
||||
function, the endpoints of a domain over which the function will be integrated, and a
|
||||
tolerance parameter. It outputs an approximation of the integral of this function
|
||||
over the specified domain. The algorithm is based on the adaptive Simpson method outlined in:
|
||||
This example demonstrates the usage of the numerical quadrature function
|
||||
integrate_function_adapt_simp(). This function takes as input a single variable
|
||||
function, the endpoints of a domain over which the function will be integrated, and a
|
||||
tolerance parameter. It outputs an approximation of the integral of this function over
|
||||
the specified domain. The algorithm is based on the adaptive Simpson method outlined in:
|
||||
|
||||
Numerical Integration method based on the adaptive Simpson method in
|
||||
Gander, W. and W. Gautschi, "Adaptive Quadrature – Revisited,"
|
||||
BIT, Vol. 40, 2000, pp. 84-101
|
||||
Numerical Integration method based on the adaptive Simpson method in
|
||||
Gander, W. and W. Gautschi, "Adaptive Quadrature – Revisited,"
|
||||
BIT, Vol. 40, 2000, pp. 84-101
|
||||
|
||||
*/
|
||||
|
||||
@ -24,40 +22,39 @@
|
||||
using namespace std;
|
||||
using namespace dlib;
|
||||
|
||||
// Here we define a class that consists of the set of functions that we
|
||||
// wish to integrate and comment in the domain of integration.
|
||||
// Here we the set of functions that we wish to integrate and comment in the domain of
|
||||
// integration.
|
||||
|
||||
// x in [0,1]
|
||||
static double gg1(double x)
|
||||
double gg1(double x)
|
||||
{
|
||||
return pow(e,x);
|
||||
}
|
||||
|
||||
// x in [0,1]
|
||||
static double gg2(double x)
|
||||
double gg2(double x)
|
||||
{
|
||||
return x*x;
|
||||
}
|
||||
|
||||
// x in [0, pi]
|
||||
static double gg3(double x)
|
||||
double gg3(double x)
|
||||
{
|
||||
return 1/(x*x + cos(x)*cos(x));
|
||||
}
|
||||
|
||||
// x in [-pi, pi]
|
||||
static double gg4(double x)
|
||||
double gg4(double x)
|
||||
{
|
||||
return sin(x);
|
||||
}
|
||||
|
||||
// x in [0,2]
|
||||
static double gg5(double x)
|
||||
double gg5(double x)
|
||||
{
|
||||
return 1/(1 + x*x);
|
||||
}
|
||||
|
||||
// Examples
|
||||
int main()
|
||||
{
|
||||
// We first define a tolerance parameter. Roughly speaking, a lower tolerance will
|
||||
|
Loading…
Reference in New Issue
Block a user