diff --git a/examples/dnn_imagenet_ex.cpp b/examples/dnn_imagenet_ex.cpp index 329c491c6..d1fa82823 100644 --- a/examples/dnn_imagenet_ex.cpp +++ b/examples/dnn_imagenet_ex.cpp @@ -47,15 +47,19 @@ using block = BN>>>>; template using ares = relu>; template using ares_down = relu>; +template using level1 = ares<512,ares<512,ares_down<512,SUBNET>>>; +template using level2 = ares<256,ares<256,ares<256,ares<256,ares<256,ares_down<256,SUBNET>>>>>>; +template using level3 = ares<128,ares<128,ares<128,ares_down<128,SUBNET>>>>; +template using level4 = ares<64,ares<64,ares<64,SUBNET>>>; using anet_type = loss_multiclass_log - >>>>>>>>>>>>>>>>>>>>>>>; + >>>>>>>>>>>; // ---------------------------------------------------------------------------------------- diff --git a/examples/dnn_imagenet_train_ex.cpp b/examples/dnn_imagenet_train_ex.cpp index 384e26662..e672018d3 100644 --- a/examples/dnn_imagenet_train_ex.cpp +++ b/examples/dnn_imagenet_train_ex.cpp @@ -40,25 +40,35 @@ template using ares_down = relu using level1 = res<512,res<512,res_down<512,SUBNET>>>; +template using level2 = res<256,res<256,res<256,res<256,res<256,res_down<256,SUBNET>>>>>>; +template using level3 = res<128,res<128,res<128,res_down<128,SUBNET>>>>; +template using level4 = res<64,res<64,res<64,SUBNET>>>; + +template using alevel1 = ares<512,ares<512,ares_down<512,SUBNET>>>; +template using alevel2 = ares<256,ares<256,ares<256,ares<256,ares<256,ares_down<256,SUBNET>>>>>>; +template using alevel3 = ares<128,ares<128,ares<128,ares_down<128,SUBNET>>>>; +template using alevel4 = ares<64,ares<64,ares<64,SUBNET>>>; + // training network type using net_type = loss_multiclass_log - >>>>>>>>>>>>>>>>>>>>>>>; + >>>>>>>>>>>; // testing network type (replaced batch normalization with fixed affine transforms) using anet_type = loss_multiclass_log - >>>>>>>>>>>>>>>>>>>>>>>; + >>>>>>>>>>>; // ----------------------------------------------------------------------------------------