feature_addition : Added a mean squared loss layer to DNN

Added mean squared loss layer "loss_mean_squared" to
DNN as requested in https://github.com/davisking/dlib/issues/152
Also added test case of a simple linear regression with one variable
that uses this layer.
This commit is contained in:
Dennis Francis 2016-11-23 14:44:33 +05:30
parent 2c8b48648b
commit cd4b62b494
3 changed files with 214 additions and 0 deletions

View File

@ -1292,6 +1292,113 @@ namespace dlib
template <typename SUBNET>
using loss_metric_hardish = add_loss_layer<loss_metric_hardish_, SUBNET>;
// ----------------------------------------------------------------------------------------
class loss_mean_squared_
{
public:
typedef float training_label_type;
typedef float output_label_type;
template <
typename SUB_TYPE,
typename label_iterator
>
void to_label (
const tensor& input_tensor,
const SUB_TYPE& sub,
label_iterator iter
) const
{
DLIB_CASSERT(sub.sample_expansion_factor() == 1);
const tensor& output_tensor = sub.get_output();
DLIB_CASSERT(output_tensor.nr() == 1 &&
output_tensor.nc() == 1 &&
output_tensor.k() == 1);
DLIB_CASSERT(input_tensor.num_samples() == output_tensor.num_samples());
const float* out_data = output_tensor.host();
for (long i = 0; i < output_tensor.num_samples(); ++i)
{
*iter++ = out_data[i];
}
}
template <
typename const_label_iterator,
typename SUBNET
>
double compute_loss_value_and_gradient (
const tensor& input_tensor,
const_label_iterator truth,
SUBNET& sub
) const
{
const tensor& output_tensor = sub.get_output();
tensor& grad = sub.get_gradient_input();
DLIB_CASSERT(sub.sample_expansion_factor() == 1);
DLIB_CASSERT(input_tensor.num_samples() != 0);
DLIB_CASSERT(input_tensor.num_samples()%sub.sample_expansion_factor() == 0);
DLIB_CASSERT(input_tensor.num_samples() == grad.num_samples());
DLIB_CASSERT(input_tensor.num_samples() == output_tensor.num_samples());
DLIB_CASSERT(output_tensor.nr() == 1 &&
output_tensor.nc() == 1 &&
output_tensor.k() == 1);
DLIB_CASSERT(grad.nr() == 1 &&
grad.nc() == 1 &&
grad.k() == 1);
// The loss we output is the average loss over the mini-batch.
const double scale = 1.0/output_tensor.num_samples();
double loss = 0;
float* g = grad.host_write_only();
const float* out_data = output_tensor.host();
for (long i = 0; i < output_tensor.num_samples(); ++i)
{
const float y = *truth++;
const float temp1 = y - out_data[i];
const float temp2 = scale*temp1;
loss += 0.5*temp2*temp1;
g[i] = -temp2;
}
return loss;
}
friend void serialize(const loss_mean_squared_& , std::ostream& out)
{
serialize("loss_mean_squared_", out);
}
friend void deserialize(loss_mean_squared_& , std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "loss_mean_squared_")
throw serialization_error("Unexpected version found while deserializing dlib::loss_mean_squared_.");
}
friend std::ostream& operator<<(std::ostream& out, const loss_mean_squared_& )
{
out << "loss_mean_squared";
return out;
}
friend void to_xml(const loss_mean_squared_& /*item*/, std::ostream& out)
{
out << "<loss_mean_squared/>";
}
};
template <typename SUBNET>
using loss_mean_squared = add_loss_layer<loss_mean_squared_, SUBNET>;
// ----------------------------------------------------------------------------------------
}

View File

@ -527,6 +527,64 @@ namespace dlib
// ----------------------------------------------------------------------------------------
class loss_mean_squared_
{
/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the mean squared loss, which is
appropriate for regression problems.
!*/
public:
typedef float training_label_type;
typedef float output_label_type;
template <
typename SUB_TYPE,
typename label_iterator
>
void to_label (
const tensor& input_tensor,
const SUB_TYPE& sub,
label_iterator iter
) const;
/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the predicted continuous variable.
!*/
template <
typename const_label_iterator,
typename SUBNET
>
double compute_loss_value_and_gradient (
const tensor& input_tensor,
const_label_iterator truth,
SUBNET& sub
) const;
/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
!*/
};
template <typename SUBNET>
using loss_mean_squared = add_loss_layer<loss_mean_squared_, SUBNET>;
}
#endif // DLIB_DNn_LOSS_ABSTRACT_H_

View File

@ -7,6 +7,7 @@
#include <cstdlib>
#include <ctime>
#include <vector>
#include <random>
#include "../dnn.h"
#include "tester.h"
@ -1737,6 +1738,53 @@ namespace
error = memcmp(g3.host(), b3g.host(), b3g.size());
DLIB_TEST(error == 0);
}
// ----------------------------------------------------------------------------------------
void test_simple_linear_regression()
{
::std::vector<matrix<double>> x(100);
::std::vector<float> y(100);
::std::default_random_engine generator(16);
::std::normal_distribution<float> distribution(0,5);
const float true_intercept = 50.0;
const float true_slope = 10.0;
for ( int ii = 0; ii < 100; ++ii )
{
const double val = static_cast<double>(ii);
matrix<double> tmp(1,1);
tmp = val;
x[ii] = tmp;
y[ii] = (true_intercept + true_slope*static_cast<float>(val) + distribution(generator));
}
using net_type = loss_mean_squared<
fc<
1, input<matrix<double>>
>
>;
net_type net;
layer<1>(net).layer_details().set_bias_learning_rate_multiplier(300);
sgd defsolver;
dnn_trainer<net_type> trainer(net, defsolver);
trainer.set_learning_rate(0.00001);
trainer.set_mini_batch_size(50);
trainer.set_max_num_epochs(170);
trainer.train(x, y);
const float slope = layer<1>(net).layer_details().get_weights().host()[0];
const float slope_error = abs(true_slope - slope);
const float intercept = layer<1>(net).layer_details().get_biases().host()[0];
const float intercept_error = abs(true_intercept - intercept);
const float eps_slope = 0.5, eps_intercept = 1.0;
DLIB_TEST_MSG(slope_error <= eps_slope,
"Expected slope = " << true_slope << " Estimated slope = " << slope << " Error limit = " << eps_slope);
DLIB_TEST_MSG(intercept_error <= eps_intercept,
"Expected intercept = " << true_intercept << " Estimated intercept = " << intercept << " Error limit = " << eps_intercept);
}
// ----------------------------------------------------------------------------------------
class dnn_tester : public tester
@ -1804,6 +1852,7 @@ namespace
test_visit_funcions();
test_copy_tensor_cpu();
test_concat();
test_simple_linear_regression();
}
void perform_test()