Cleaned up python svm struct code a little.

This commit is contained in:
Davis King 2013-07-07 12:28:31 -04:00
parent d0a054f15a
commit cc9ff97a29
2 changed files with 39 additions and 19 deletions

View File

@ -1,7 +1,10 @@
#!/usr/bin/python
# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
#
#
# This is an example illustrating the use of the structural SVM solver from the dlib C++
# Library. This example will briefly introduce it and then walk through an example showing
# how to use it to create a simple multi-class classifier.
#
#
# COMPILING THE DLIB PYTHON INTERFACE
# Dlib comes with a compiled python interface for python 2.7 on MS Windows. If
@ -15,6 +18,7 @@
import dlib
def dot(a, b):
"Compute the dot product between the two vectors a and b."
return sum(i*j for i,j in zip(a,b))
@ -23,30 +27,35 @@ class three_class_classifier_problem:
be_verbose = True
epsilon = 0.0001
def __init__(self, samples, labels):
self.num_samples = len(samples)
self.num_dimensions = len(samples[0])*3
self.samples = samples
self.labels = labels
def make_psi(self, psi, vector, label):
def make_psi(self, vector, label):
psi = dlib.vector()
psi.resize(self.num_dimensions)
dims = len(vector)
if (label == 1):
if (label == 0):
for i in range(0,dims):
psi[i] = vector[i]
elif (label == 2):
elif (label == 1):
for i in range(dims,2*dims):
psi[i] = vector[i-dims]
else:
else: # the label must be 2
for i in range(2*dims,3*dims):
psi[i] = vector[i-2*dims]
return psi
def get_truth_joint_feature_vector(self, idx, psi):
self.make_psi(psi, self.samples[idx], self.labels[idx])
def get_truth_joint_feature_vector(self, idx):
return self.make_psi(self.samples[idx], self.labels[idx])
def separation_oracle(self, idx, current_solution, psi):
def separation_oracle(self, idx, current_solution):
samp = samples[idx]
dims = len(samp)
scores = [0,0,0]
@ -56,29 +65,28 @@ class three_class_classifier_problem:
scores[2] = dot(current_solution[2*dims:3*dims], samp)
# Add in the loss-augmentation
if (labels[idx] != 1):
if (labels[idx] != 0):
scores[0] += 1
if (labels[idx] != 2):
if (labels[idx] != 1):
scores[1] += 1
if (labels[idx] != 3):
if (labels[idx] != 2):
scores[2] += 1
# Now figure out which classifier has the largest loss-augmented score.
max_scoring_label = scores.index(max(scores))+1
max_scoring_label = scores.index(max(scores))
if (max_scoring_label == labels[idx]):
loss = 0
else:
loss = 1
self.make_psi(psi, samp, max_scoring_label)
psi = self.make_psi(samp, max_scoring_label)
return loss
return loss,psi
samples = [ [0,0,1], [0,1,0], [1,0,0]];
labels = [1, 2, 3]
samples = [[0,0,1], [0,1,0], [1,0,0]];
labels = [0,1,2]
problem = three_class_classifier_problem(samples, labels)
weights = dlib.solve_structural_svm_problem(problem)

View File

@ -37,7 +37,7 @@ public:
feature_vector_type& psi
) const
{
problem.attr("get_truth_joint_feature_vector")(idx,boost::ref(psi));
psi = extract<feature_vector_type&>(problem.attr("get_truth_joint_feature_vector")(idx));
}
virtual void separation_oracle (
@ -47,7 +47,19 @@ public:
feature_vector_type& psi
) const
{
loss = extract<double>(problem.attr("separation_oracle")(idx,boost::ref(current_solution),boost::ref(psi)));
object res = problem.attr("separation_oracle")(idx,boost::ref(current_solution));
pyassert(len(res) == 2, "separation_oracle() must return two objects, the loss and the psi vector");
// let the user supply the output arguments in any order.
if (extract<double>(res[0]).check())
{
loss = extract<double>(res[0]);
psi = extract<feature_vector_type&>(res[1]);
}
else
{
psi = extract<feature_vector_type&>(res[0]);
loss = extract<double>(res[1]);
}
}
private: