mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
Added a sparse SVM example.
--HG-- rename : examples/svm_pegasos_ex.cpp => examples/svm_sparse_ex.cpp extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402969
This commit is contained in:
parent
cbdafe2ed2
commit
cb3d2213cf
@ -62,6 +62,7 @@ add_example(sockstreambuf_ex)
|
||||
add_example(std_allocator_ex)
|
||||
add_example(svm_ex)
|
||||
add_example(svm_pegasos_ex)
|
||||
add_example(svm_sparse_ex)
|
||||
add_example(threaded_object_ex)
|
||||
add_example(thread_function_ex)
|
||||
add_example(thread_pool_ex)
|
||||
|
101
examples/svm_sparse_ex.cpp
Normal file
101
examples/svm_sparse_ex.cpp
Normal file
@ -0,0 +1,101 @@
|
||||
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
||||
/*
|
||||
|
||||
This is an example illustrating the use of the dlib C++ library's
|
||||
implementation of the pegasos algorithm for online training of support
|
||||
vector machines. This example exists primarily to show you how to
|
||||
use sparse vectors with the library's machine learning algorithms.
|
||||
|
||||
This example creates a simple binary classification problem and shows
|
||||
you how to train a support vector machine on that data.
|
||||
|
||||
The data used in this example will be 100 dimensional data and will
|
||||
come from a simple linearly separable distribution.
|
||||
*/
|
||||
|
||||
|
||||
#include <iostream>
|
||||
#include <ctime>
|
||||
#include <vector>
|
||||
#include "dlib/svm.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace dlib;
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
// In this example program we will be dealing with feature vectors that are sparse (i.e. most
|
||||
// of the values in each vector are zero). So rather than using a dlib::matrix we can use
|
||||
// one of the containers from the STL to represent our sample vectors. In particular, we
|
||||
// can use the std::map to represent sparse vectors. (Note that you don't have to use std::map.
|
||||
// Any STL container of std::pair objects that is sorted can be used. So for example, you could
|
||||
// use a std::vector<std::pair<long,double> > here so long as you took care to sort every vector)
|
||||
typedef std::map<long,double> sample_type;
|
||||
|
||||
|
||||
// This is a typedef for the type of kernel we are going to use in this example.
|
||||
// Since our data is linearly separable I picked the linear kernel. Note that if you
|
||||
// are using a sparse vector representation like std::map then you have to use a kernel
|
||||
// meant to be used with that kind of data type.
|
||||
typedef sparse_linear_kernel<sample_type> kernel_type;
|
||||
|
||||
|
||||
// Here we create an instance of the pegasos svm trainer object we will be using.
|
||||
svm_pegasos<kernel_type> trainer;
|
||||
// Here we setup a parameter to this object. See the dlib documentation for a
|
||||
// description of what this parameter does.
|
||||
trainer.set_lambda(0.00001);
|
||||
|
||||
std::vector<sample_type> samples;
|
||||
std::vector<double> labels;
|
||||
|
||||
// make an instance of a sample vector so we can use it below
|
||||
sample_type sample;
|
||||
|
||||
|
||||
// Now lets go into a loop and randomly generate 10000 samples.
|
||||
srand(time(0));
|
||||
double label = +1;
|
||||
for (int i = 0; i < 10000; ++i)
|
||||
{
|
||||
// flip this flag
|
||||
label *= -1;
|
||||
|
||||
sample.clear();
|
||||
|
||||
// now make a random sparse sample with at most 10 non-zero elements
|
||||
for (int j = 0; j < 10; ++j)
|
||||
{
|
||||
int idx = std::rand()%100;
|
||||
double value = static_cast<double>(std::rand())/RAND_MAX;
|
||||
|
||||
sample[idx] = label*value;
|
||||
}
|
||||
|
||||
// let the svm_pegasos learn about this sample
|
||||
trainer.train(sample,label);
|
||||
}
|
||||
|
||||
// Now we have trained our SVM. Lets test it out a bit.
|
||||
// Each of these statements prints out the output of the SVM given a particular sample.
|
||||
// The SVM outputs a number > 0 if a sample is predicted to be in the +1 class and < 0
|
||||
// if a sample is predicted to be in the -1 class.
|
||||
|
||||
sample.clear();
|
||||
sample[4] = 0.3;
|
||||
sample[10] = 0.9;
|
||||
cout << "This is a +1 example, its SVM output is: " << trainer(sample) << endl;
|
||||
|
||||
sample.clear();
|
||||
sample[83] = -0.3;
|
||||
sample[26] = -0.9;
|
||||
sample[58] = -0.7;
|
||||
cout << "This is a -1 example, its SVM output is: " << trainer(sample) << endl;
|
||||
|
||||
sample.clear();
|
||||
sample[0] = -0.2;
|
||||
sample[9] = -0.8;
|
||||
cout << "This is a -1 example, its SVM output is: " << trainer(sample) << endl;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user