simplify resnet definition by reusing struct template parameter (#2010)

* simplify definition by reusing struct template parameter

* put resnet into its own namespace

* fix infer names

* rename struct impl to def
This commit is contained in:
Adrià Arrufat 2020-03-10 10:21:04 +09:00 committed by GitHub
parent 3a53c78ad2
commit c832d3b2fc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 89 additions and 84 deletions

View File

@ -29,7 +29,7 @@ namespace model
using net_type = loss_metric< using net_type = loss_metric<
fc_no_bias<128, fc_no_bias<128,
avg_pool_everything< avg_pool_everything<
typename resnet<BN>::template backbone_50< typename resnet::def<BN>::template backbone_50<
input_rgb_image input_rgb_image
>>>>; >>>>;
@ -75,7 +75,7 @@ int main() try
{ {
// Now, let's define the classic ResNet50 network and load the pretrained model on // Now, let's define the classic ResNet50 network and load the pretrained model on
// ImageNet. // ImageNet.
resnet<bn_con>::n50 resnet50; resnet::train_50 resnet50;
std::vector<string> labels; std::vector<string> labels;
deserialize("resnet50_1000_imagenet_classifier.dnn") >> resnet50 >> labels; deserialize("resnet50_1000_imagenet_classifier.dnn") >> resnet50 >> labels;

View File

@ -3,85 +3,77 @@
#include <dlib/dnn.h> #include <dlib/dnn.h>
// BATCHNORM must be bn_con or affine layer namespace resnet
template<template<typename> class BATCHNORM> {
struct resnet using namespace dlib;
// BN is bn_con or affine layer
template<template<typename> class BN>
struct def
{ {
// the resnet basic block, where BN is bn_con or affine // the resnet basic block, where BN is bn_con or affine
template<long num_filters, template<typename> class BN, int stride, typename SUBNET> template<long num_filters, int stride, typename SUBNET>
using basicblock = BN<dlib::con<num_filters, 3, 3, 1, 1, using basicblock = BN<con<num_filters, 3, 3, 1, 1,
dlib::relu<BN<dlib::con<num_filters, 3, 3, stride, stride, SUBNET>>>>>; relu<BN<con<num_filters, 3, 3, stride, stride, SUBNET>>>>>;
// the resnet bottleneck block // the resnet bottleneck block
template<long num_filters, template<typename> class BN, int stride, typename SUBNET> template<long num_filters, int stride, typename SUBNET>
using bottleneck = BN<dlib::con<4 * num_filters, 1, 1, 1, 1, using bottleneck = BN<con<4 * num_filters, 1, 1, 1, 1,
dlib::relu<BN<dlib::con<num_filters, 3, 3, stride, stride, relu<BN<con<num_filters, 3, 3, stride, stride,
dlib::relu<BN<dlib::con<num_filters, 1, 1, 1, 1, SUBNET>>>>>>>>; relu<BN<con<num_filters, 1, 1, 1, 1, SUBNET>>>>>>>>;
// the resnet residual // the resnet residual, where BLOCK is either basicblock or bottleneck
template< template<template<long, int, typename> class BLOCK, long num_filters, typename SUBNET>
template<long, template<typename> class, int, typename> class BLOCK, // basicblock or bottleneck using residual = add_prev1<BLOCK<num_filters, 1, tag1<SUBNET>>>;
long num_filters,
template<typename> class BN, // bn_con or affine
typename SUBNET
> // adds the block to the result of tag1 (the subnet)
using residual = dlib::add_prev1<BLOCK<num_filters, BN, 1, dlib::tag1<SUBNET>>>;
// a resnet residual that does subsampling on both paths // a resnet residual that does subsampling on both paths
template<template<long, int, typename> class BLOCK, long num_filters, typename SUBNET>
using residual_down = add_prev2<avg_pool<2, 2, 2, 2,
skip1<tag2<BLOCK<num_filters, 2,
tag1<SUBNET>>>>>>;
// residual block with optional downsampling
template< template<
template<long, template<typename> class, int, typename> class BLOCK, // basicblock or bottleneck template<template<long, int, typename> class, long, typename> class RESIDUAL,
template<long, int, typename> class BLOCK,
long num_filters, long num_filters,
template<typename> class BN, // bn_con or affine
typename SUBNET typename SUBNET
> >
using residual_down = dlib::add_prev2<dlib::avg_pool<2, 2, 2, 2, using residual_block = relu<RESIDUAL<BLOCK, num_filters, SUBNET>>;
dlib::skip1<dlib::tag2<BLOCK<num_filters, BN, 2,
dlib::tag1<SUBNET>>>>>>;
// residual block with optional downsampling and custom regularization (bn_con or affine)
template<
template<template<long, template<typename> class, int, typename> class, long, template<typename>class, typename> class RESIDUAL,
template<long, template<typename> class, int, typename> class BLOCK,
long num_filters,
template<typename> class BN, // bn_con or affine
typename SUBNET
>
using residual_block = dlib::relu<RESIDUAL<BLOCK, num_filters, BN, SUBNET>>;
template<long num_filters, typename SUBNET> template<long num_filters, typename SUBNET>
using resbasicblock_down = residual_block<residual_down, basicblock, num_filters, BATCHNORM, SUBNET>; using resbasicblock_down = residual_block<residual_down, basicblock, num_filters, SUBNET>;
template<long num_filters, typename SUBNET> template<long num_filters, typename SUBNET>
using resbottleneck_down = residual_block<residual_down, bottleneck, num_filters, BATCHNORM, SUBNET>; using resbottleneck_down = residual_block<residual_down, bottleneck, num_filters, SUBNET>;
// some definitions to allow the use of the repeat layer // some definitions to allow the use of the repeat layer
template<typename SUBNET> using resbasicblock_512 = residual_block<residual, basicblock, 512, BATCHNORM, SUBNET>; template<typename SUBNET> using resbasicblock_512 = residual_block<residual, basicblock, 512, SUBNET>;
template<typename SUBNET> using resbasicblock_256 = residual_block<residual, basicblock, 256, BATCHNORM, SUBNET>; template<typename SUBNET> using resbasicblock_256 = residual_block<residual, basicblock, 256, SUBNET>;
template<typename SUBNET> using resbasicblock_128 = residual_block<residual, basicblock, 128, BATCHNORM, SUBNET>; template<typename SUBNET> using resbasicblock_128 = residual_block<residual, basicblock, 128, SUBNET>;
template<typename SUBNET> using resbasicblock_64 = residual_block<residual, basicblock, 64, BATCHNORM, SUBNET>; template<typename SUBNET> using resbasicblock_64 = residual_block<residual, basicblock, 64, SUBNET>;
template<typename SUBNET> using resbottleneck_512 = residual_block<residual, bottleneck, 512, BATCHNORM, SUBNET>; template<typename SUBNET> using resbottleneck_512 = residual_block<residual, bottleneck, 512, SUBNET>;
template<typename SUBNET> using resbottleneck_256 = residual_block<residual, bottleneck, 256, BATCHNORM, SUBNET>; template<typename SUBNET> using resbottleneck_256 = residual_block<residual, bottleneck, 256, SUBNET>;
template<typename SUBNET> using resbottleneck_128 = residual_block<residual, bottleneck, 128, BATCHNORM, SUBNET>; template<typename SUBNET> using resbottleneck_128 = residual_block<residual, bottleneck, 128, SUBNET>;
template<typename SUBNET> using resbottleneck_64 = residual_block<residual, bottleneck, 64, BATCHNORM, SUBNET>; template<typename SUBNET> using resbottleneck_64 = residual_block<residual, bottleneck, 64, SUBNET>;
// common processing for standard resnet inputs // common processing for standard resnet inputs
template<template<typename> class BN, typename INPUT> template<typename INPUT>
using input_processing = dlib::max_pool<3, 3, 2, 2, dlib::relu<BN<dlib::con<64, 7, 7, 2, 2, INPUT>>>>; using input_processing = max_pool<3, 3, 2, 2, relu<BN<con<64, 7, 7, 2, 2, INPUT>>>>;
// the resnet backbone with basicblocks // the resnet backbone with basicblocks
template<long nb_512, long nb_256, long nb_128, long nb_64, typename INPUT> template<long nb_512, long nb_256, long nb_128, long nb_64, typename INPUT>
using backbone_basicblock = using backbone_basicblock =
dlib::repeat<nb_512, resbasicblock_512, resbasicblock_down<512, repeat<nb_512, resbasicblock_512, resbasicblock_down<512,
dlib::repeat<nb_256, resbasicblock_256, resbasicblock_down<256, repeat<nb_256, resbasicblock_256, resbasicblock_down<256,
dlib::repeat<nb_128, resbasicblock_128, resbasicblock_down<128, repeat<nb_128, resbasicblock_128, resbasicblock_down<128,
dlib::repeat<nb_64, resbasicblock_64, input_processing<BATCHNORM, INPUT>>>>>>>>; repeat<nb_64, resbasicblock_64, input_processing<INPUT>>>>>>>>;
// the resnet backbone with bottlenecks // the resnet backbone with bottlenecks
template<long nb_512, long nb_256, long nb_128, long nb_64, typename INPUT> template<long nb_512, long nb_256, long nb_128, long nb_64, typename INPUT>
using backbone_bottleneck = using backbone_bottleneck =
dlib::repeat<nb_512, resbottleneck_512, resbottleneck_down<512, repeat<nb_512, resbottleneck_512, resbottleneck_down<512,
dlib::repeat<nb_256, resbottleneck_256, resbottleneck_down<256, repeat<nb_256, resbottleneck_256, resbottleneck_down<256,
dlib::repeat<nb_128, resbottleneck_128, resbottleneck_down<128, repeat<nb_128, resbottleneck_128, resbottleneck_down<128,
dlib::repeat<nb_64, resbottleneck_64, input_processing<BATCHNORM, INPUT>>>>>>>>; repeat<nb_64, resbottleneck_64, input_processing<INPUT>>>>>>>>;
// the backbones for the classic architectures // the backbones for the classic architectures
template<typename INPUT> using backbone_18 = backbone_basicblock<1, 1, 1, 2, INPUT>; template<typename INPUT> using backbone_18 = backbone_basicblock<1, 1, 1, 2, INPUT>;
@ -91,11 +83,24 @@ struct resnet
template<typename INPUT> using backbone_152 = backbone_bottleneck<2, 35, 7, 3, INPUT>; template<typename INPUT> using backbone_152 = backbone_bottleneck<2, 35, 7, 3, INPUT>;
// the typical classifier models // the typical classifier models
using n18 = dlib::loss_multiclass_log<dlib::fc<1000, dlib::avg_pool_everything<backbone_18<dlib::input_rgb_image>>>>; using n18 = loss_multiclass_log<fc<1000, avg_pool_everything<backbone_18<input_rgb_image>>>>;
using n34 = dlib::loss_multiclass_log<dlib::fc<1000, dlib::avg_pool_everything<backbone_34<dlib::input_rgb_image>>>>; using n34 = loss_multiclass_log<fc<1000, avg_pool_everything<backbone_34<input_rgb_image>>>>;
using n50 = dlib::loss_multiclass_log<dlib::fc<1000, dlib::avg_pool_everything<backbone_50<dlib::input_rgb_image>>>>; using n50 = loss_multiclass_log<fc<1000, avg_pool_everything<backbone_50<input_rgb_image>>>>;
using n101 = dlib::loss_multiclass_log<dlib::fc<1000, dlib::avg_pool_everything<backbone_101<dlib::input_rgb_image>>>>; using n101 = loss_multiclass_log<fc<1000, avg_pool_everything<backbone_101<input_rgb_image>>>>;
using n152 = dlib::loss_multiclass_log<dlib::fc<1000, dlib::avg_pool_everything<backbone_152<dlib::input_rgb_image>>>>; using n152 = loss_multiclass_log<fc<1000, avg_pool_everything<backbone_152<input_rgb_image>>>>;
}; };
using train_18 = def<bn_con>::n18;
using train_34 = def<bn_con>::n34;
using train_50 = def<bn_con>::n50;
using train_101 = def<bn_con>::n101;
using train_152 = def<bn_con>::n152;
using infer_18 = def<affine>::n18;
using infer_34 = def<affine>::n34;
using infer_50 = def<affine>::n50;
using infer_101 = def<affine>::n101;
using infer_152 = def<affine>::n152;
}
#endif // ResNet_H #endif // ResNet_H