Added an example program showing how to use the least squares optimization

routines.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403945
This commit is contained in:
Davis King 2010-12-04 19:37:58 +00:00
parent 7488d6f57e
commit c20fb45c45
2 changed files with 229 additions and 0 deletions

View File

@ -55,6 +55,7 @@ add_example(krls_ex)
add_example(krls_filter_ex)
add_example(krr_classification_ex)
add_example(krr_regression_ex)
add_example(least_squares_ex)
add_example(linear_manifold_regularizer_ex)
add_example(logger_ex)
add_example(logger_ex_2)

228
examples/least_squares_ex.cpp Executable file
View File

@ -0,0 +1,228 @@
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use the general purpose non-linear
least squares optimization routines from the dlib C++ Library.
This example program will demonstrate how these routines can be used for data fitting.
In particular, we will generate a set of data and then use the least squares
routines to infer the parameters of the model which generated the data.
*/
#include "dlib/optimization.h"
#include <iostream>
#include <vector>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
typedef matrix<double,2,1> input_vector;
typedef matrix<double,3,1> parameter_vector;
// ----------------------------------------------------------------------------------------
// We will use this function to generate data. It represents a function of 2 variables
// and 3 parameters. The least squares procedure will be used to infer the values of
// the 3 parameters based on a set of input/output pairs.
double model (
const input_vector& input,
const parameter_vector& params
)
{
const double p0 = params(0);
const double p1 = params(1);
const double p2 = params(2);
const double i0 = input(0);
const double i1 = input(1);
const double temp = p0*i0 + p1*i1 + p2;
return temp*temp;
}
// ----------------------------------------------------------------------------------------
// This function is the "residual" for a least squares problem. It takes an input/output
// pair and compares it to the output of our model and returns the amount of error. The idea
// is to find the set of parameters which makes the residual small on all the data pairs.
double residual (
const std::pair<input_vector, double>& data,
const parameter_vector& params
)
{
return model(data.first, params) - data.second;
}
// ----------------------------------------------------------------------------------------
// This function is the derivative of the residual() function with respect to the parameters.
parameter_vector residual_derivative (
const std::pair<input_vector, double>& data,
const parameter_vector& params
)
{
parameter_vector der;
const double p0 = params(0);
const double p1 = params(1);
const double p2 = params(2);
const double i0 = data.first(0);
const double i1 = data.first(1);
const double temp = p0*i0 + p1*i1 + p2;
der(0) = i0*2*temp;
der(1) = i1*2*temp;
der(2) = 2*temp;
return der;
}
// ----------------------------------------------------------------------------------------
int main()
{
try
{
// randomly pick a set of parameters to use in this example
const parameter_vector params = 10*randm(3,1);
cout << "params: " << trans(params) << endl;
// Now lets generate a bunch of input/output pairs according to our model.
std::vector<std::pair<input_vector, double> > data_samples;
input_vector input;
for (int i = 0; i < 1000; ++i)
{
input = 10*randm(2,1);
const double output = model(input, params);
// save the pair
data_samples.push_back(make_pair(input, output));
}
// Before we do anything, lets make sure that our derivative function defined above matches
// the approximate derivative computed using central differences (via derivative()).
// If this value is big then it means we probably typed the derivative function incorrectly.
cout << "derivative error: " << length(residual_derivative(data_samples[0], params) -
derivative(&residual)(data_samples[0], params) ) << endl;
// Now lets use the solve_least_squares_lm() routine to figure out what the
// parameters are based on just the data_samples.
parameter_vector x;
x = 1;
cout << "Use Levenberg-Marquardt" << endl;
// Use the Levenberg-Marquardt method to determine the parameters which
// minimize the sum of all squared residuals.
solve_least_squares_lm(objective_delta_stop_strategy(1e-7).be_verbose(),
&residual,
&residual_derivative,
data_samples,
x);
// Now x contains the solution. If everything worked it will be equal to params.
cout << "inferred parameters: "<< trans(x) << endl;
cout << "solution error: "<< length(x - params) << endl;
cout << endl;
x = 1;
cout << "Use Levenberg-Marquardt, approximate derivatives" << endl;
// If we didn't create the residual_derivative function then we could
// have used this method which numerically approximates the derivatives for you.
solve_least_squares_lm(objective_delta_stop_strategy(1e-7).be_verbose(),
&residual,
derivative(&residual),
data_samples,
x);
// Now x contains the solution. If everything worked it will be equal to params.
cout << "inferred parameters: "<< trans(x) << endl;
cout << "solution error: "<< length(x - params) << endl;
cout << endl;
x = 1;
cout << "Use Levenberg-Marquardt/quasi-newton hybrid" << endl;
// This version of the solver uses a method which is appropriate for problems
// where the residuals don't go to zero at the solution. So in these cases
// it may provide a better answer.
solve_least_squares(objective_delta_stop_strategy(1e-7).be_verbose(),
&residual,
&residual_derivative,
data_samples,
x);
// Now x contains the solution. If everything worked it will be equal to params.
cout << "inferred parameters: "<< trans(x) << endl;
cout << "solution error: "<< length(x - params) << endl;
}
catch (std::exception& e)
{
cout << e.what() << endl;
}
}
// Example output:
/*
params: 8.40188 3.94383 7.83099
derivative error: 9.78267e-06
Use Levenberg-Marquardt
iteration: 0 objective: 2.14455e+10
iteration: 1 objective: 1.96248e+10
iteration: 2 objective: 1.39172e+10
iteration: 3 objective: 1.57036e+09
iteration: 4 objective: 2.66917e+07
iteration: 5 objective: 4741.9
iteration: 6 objective: 0.000238674
iteration: 7 objective: 7.8815e-19
iteration: 8 objective: 0
inferred parameters: 8.40188 3.94383 7.83099
solution error: 0
Use Levenberg-Marquardt, approximate derivatives
iteration: 0 objective: 2.14455e+10
iteration: 1 objective: 1.96248e+10
iteration: 2 objective: 1.39172e+10
iteration: 3 objective: 1.57036e+09
iteration: 4 objective: 2.66917e+07
iteration: 5 objective: 4741.87
iteration: 6 objective: 0.000238701
iteration: 7 objective: 1.0571e-18
iteration: 8 objective: 4.12469e-22
inferred parameters: 8.40188 3.94383 7.83099
solution error: 5.34754e-15
Use Levenberg-Marquardt/quasi-newton hybrid
iteration: 0 objective: 2.14455e+10
iteration: 1 objective: 1.96248e+10
iteration: 2 objective: 1.3917e+10
iteration: 3 objective: 1.5572e+09
iteration: 4 objective: 2.74139e+07
iteration: 5 objective: 5135.98
iteration: 6 objective: 0.000285539
iteration: 7 objective: 1.15441e-18
iteration: 8 objective: 3.38834e-23
inferred parameters: 8.40188 3.94383 7.83099
solution error: 1.77636e-15
*/