mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
Shape predictor trainer optimizations (#126)
* Shape predictor trainer optimizations * Fixed performance leak in single thread mode & made VS2010 support
This commit is contained in:
parent
6eb5bd8068
commit
bbeac285d1
@ -80,7 +80,7 @@ namespace dlib
|
||||
i = 0;
|
||||
while (i < splits.size())
|
||||
{
|
||||
if (feature_pixel_values[splits[i].idx1] - feature_pixel_values[splits[i].idx2] > splits[i].thresh)
|
||||
if ((float)feature_pixel_values[splits[i].idx1] - (float)feature_pixel_values[splits[i].idx2] > splits[i].thresh)
|
||||
i = left_child(i);
|
||||
else
|
||||
i = right_child(i);
|
||||
@ -235,7 +235,7 @@ namespace dlib
|
||||
|
||||
// ------------------------------------------------------------------------------------
|
||||
|
||||
template <typename image_type>
|
||||
template <typename image_type, typename feature_type>
|
||||
void extract_feature_pixel_values (
|
||||
const image_type& img_,
|
||||
const rectangle& rect,
|
||||
@ -243,7 +243,7 @@ namespace dlib
|
||||
const matrix<float,0,1>& reference_shape,
|
||||
const std::vector<unsigned long>& reference_pixel_anchor_idx,
|
||||
const std::vector<dlib::vector<float,2> >& reference_pixel_deltas,
|
||||
std::vector<float>& feature_pixel_values
|
||||
std::vector<feature_type>& feature_pixel_values
|
||||
)
|
||||
/*!
|
||||
requires
|
||||
@ -453,6 +453,7 @@ namespace dlib
|
||||
_num_test_splits = 20;
|
||||
_feature_pool_region_padding = 0;
|
||||
_verbose = false;
|
||||
_num_threads = 0;
|
||||
}
|
||||
|
||||
unsigned long get_cascade_depth (
|
||||
@ -605,6 +606,15 @@ namespace dlib
|
||||
_verbose = false;
|
||||
}
|
||||
|
||||
unsigned long get_num_threads (
|
||||
) const { return _num_threads; }
|
||||
void set_num_threads (
|
||||
unsigned long num
|
||||
)
|
||||
{
|
||||
_num_threads = num;
|
||||
}
|
||||
|
||||
template <typename image_array>
|
||||
shape_predictor train (
|
||||
const image_array& images,
|
||||
@ -661,13 +671,17 @@ namespace dlib
|
||||
<< "\n\t you can't have a part that is always set to OBJECT_PART_NOT_PRESENT."
|
||||
);
|
||||
|
||||
// creating thread pool. if num_threads <= 1, trainer should work in caller thread
|
||||
thread_pool tp(_num_threads > 1 ? _num_threads : 0);
|
||||
|
||||
|
||||
|
||||
// determining the type of features used for this type of images
|
||||
typedef typename std::remove_const<typename std::remove_reference<decltype(images[0])>::type>::type image_type;
|
||||
typedef typename image_traits<image_type>::pixel_type pixel_type;
|
||||
typedef typename pixel_traits<pixel_type>::basic_pixel_type feature_type;
|
||||
|
||||
rnd.set_seed(get_random_seed());
|
||||
|
||||
std::vector<training_sample> samples;
|
||||
std::vector<training_sample<feature_type>> samples;
|
||||
const matrix<float,0,1> initial_shape = populate_training_sample_shapes(objects, samples);
|
||||
const std::vector<std::vector<dlib::vector<float,2> > > pixel_coordinates = randomly_sample_pixel_coordinates(initial_shape);
|
||||
|
||||
@ -688,17 +702,17 @@ namespace dlib
|
||||
|
||||
// First compute the feature_pixel_values for each training sample at this
|
||||
// level of the cascade.
|
||||
for (unsigned long i = 0; i < samples.size(); ++i)
|
||||
parallel_for(tp, 0, samples.size(), [&](unsigned long i)
|
||||
{
|
||||
extract_feature_pixel_values(images[samples[i].image_idx], samples[i].rect,
|
||||
impl::extract_feature_pixel_values(images[samples[i].image_idx], samples[i].rect,
|
||||
samples[i].current_shape, initial_shape, anchor_idx,
|
||||
deltas, samples[i].feature_pixel_values);
|
||||
}
|
||||
}, 1);
|
||||
|
||||
// Now start building the trees at this cascade level.
|
||||
for (unsigned long i = 0; i < get_num_trees_per_cascade_level(); ++i)
|
||||
{
|
||||
forests[cascade].push_back(make_regression_tree(samples, pixel_coordinates[cascade]));
|
||||
forests[cascade].push_back(make_regression_tree(tp, samples, pixel_coordinates[cascade]));
|
||||
|
||||
if (_verbose)
|
||||
{
|
||||
@ -745,6 +759,7 @@ namespace dlib
|
||||
}
|
||||
}
|
||||
|
||||
template<typename feature_type>
|
||||
struct training_sample
|
||||
{
|
||||
/*!
|
||||
@ -760,6 +775,8 @@ namespace dlib
|
||||
- present == 0/1 mask saying which parts of target_shape are present.
|
||||
- rect == the position of the object in the image_idx-th image. All shape
|
||||
coordinates are coded relative to this rectangle.
|
||||
- diff_shape == temporary value for holding difference between current
|
||||
shape and target shape
|
||||
!*/
|
||||
|
||||
unsigned long image_idx;
|
||||
@ -768,7 +785,8 @@ namespace dlib
|
||||
matrix<float,0,1> present;
|
||||
|
||||
matrix<float,0,1> current_shape;
|
||||
std::vector<float> feature_pixel_values;
|
||||
matrix<float,0,1> diff_shape;
|
||||
std::vector<feature_type> feature_pixel_values;
|
||||
|
||||
void swap(training_sample& item)
|
||||
{
|
||||
@ -777,12 +795,15 @@ namespace dlib
|
||||
target_shape.swap(item.target_shape);
|
||||
present.swap(item.present);
|
||||
current_shape.swap(item.current_shape);
|
||||
diff_shape.swap(item.diff_shape);
|
||||
feature_pixel_values.swap(item.feature_pixel_values);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename feature_type>
|
||||
impl::regression_tree make_regression_tree (
|
||||
std::vector<training_sample>& samples,
|
||||
thread_pool& tp,
|
||||
std::vector<training_sample<feature_type>>& samples,
|
||||
const std::vector<dlib::vector<float,2> >& pixel_coordinates
|
||||
) const
|
||||
{
|
||||
@ -795,15 +816,49 @@ namespace dlib
|
||||
// walk the tree in breadth first order
|
||||
const unsigned long num_split_nodes = static_cast<unsigned long>(std::pow(2.0, (double)get_tree_depth())-1);
|
||||
std::vector<matrix<float,0,1> > sums(num_split_nodes*2+1);
|
||||
if (tp.num_threads_in_pool() > 1)
|
||||
{
|
||||
// Here we need to calculate shape differences and store sum of differences into sums[0]
|
||||
// to make it I am splitting of samples into blocks, each block will be processed by
|
||||
// separate thread, and the sum of differences of each block is stored into separate
|
||||
// place in block_sums
|
||||
|
||||
const unsigned long num_workers = std::max(1UL, tp.num_threads_in_pool());
|
||||
const unsigned long num = samples.size();
|
||||
const unsigned long block_size = std::max(1UL, (num + num_workers - 1) / num_workers);
|
||||
std::vector<matrix<float,0,1> > block_sums(num_workers);
|
||||
|
||||
parallel_for(tp, 0, num_workers, [&](unsigned long block)
|
||||
{
|
||||
const unsigned long block_begin = block * block_size;
|
||||
const unsigned long block_end = std::min(num, block_begin + block_size);
|
||||
for (unsigned long i = block_begin; i < block_end; ++i)
|
||||
{
|
||||
samples[i].diff_shape = samples[i].target_shape - samples[i].current_shape;
|
||||
block_sums[block] += samples[i].diff_shape;
|
||||
}
|
||||
}, 1);
|
||||
|
||||
// now calculate the total result from separate blocks
|
||||
for (unsigned long i = 0; i < block_sums.size(); ++i)
|
||||
sums[0] += block_sums[i];
|
||||
}
|
||||
else
|
||||
{
|
||||
// synchronous implementation
|
||||
for (unsigned long i = 0; i < samples.size(); ++i)
|
||||
sums[0] += samples[i].target_shape - samples[i].current_shape;
|
||||
{
|
||||
samples[i].diff_shape = samples[i].target_shape - samples[i].current_shape;
|
||||
sums[0] += samples[i].diff_shape;
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned long i = 0; i < num_split_nodes; ++i)
|
||||
{
|
||||
std::pair<unsigned long,unsigned long> range = parts.front();
|
||||
parts.pop_front();
|
||||
|
||||
const impl::split_feature split = generate_split(samples, range.first,
|
||||
const impl::split_feature split = generate_split(tp, samples, range.first,
|
||||
range.second, pixel_coordinates, sums[i], sums[left_child(i)],
|
||||
sums[right_child(i)]);
|
||||
tree.splits.push_back(split);
|
||||
@ -833,7 +888,7 @@ namespace dlib
|
||||
tree.leaf_values[i] = zeros_matrix(samples[0].target_shape);
|
||||
|
||||
// now adjust the current shape based on these predictions
|
||||
for (unsigned long j = parts[i].first; j < parts[i].second; ++j)
|
||||
parallel_for(tp, parts[i].first, parts[i].second, [&](unsigned long j)
|
||||
{
|
||||
samples[j].current_shape += tree.leaf_values[i];
|
||||
// For parts that aren't present in the training data, we just make
|
||||
@ -846,7 +901,7 @@ namespace dlib
|
||||
if (samples[j].present(k) == 0)
|
||||
samples[j].target_shape(k) = samples[j].current_shape(k);
|
||||
}
|
||||
}
|
||||
}, 1);
|
||||
}
|
||||
|
||||
return tree;
|
||||
@ -873,8 +928,10 @@ namespace dlib
|
||||
return feat;
|
||||
}
|
||||
|
||||
template<typename feature_type>
|
||||
impl::split_feature generate_split (
|
||||
const std::vector<training_sample>& samples,
|
||||
thread_pool& tp,
|
||||
const std::vector<training_sample<feature_type>>& samples,
|
||||
unsigned long begin,
|
||||
unsigned long end,
|
||||
const std::vector<dlib::vector<float,2> >& pixel_coordinates,
|
||||
@ -896,24 +953,33 @@ namespace dlib
|
||||
std::vector<matrix<float,0,1> > left_sums(num_test_splits);
|
||||
std::vector<unsigned long> left_cnt(num_test_splits);
|
||||
|
||||
const unsigned long num_workers = std::max(1UL, tp.num_threads_in_pool());
|
||||
const unsigned long block_size = std::max(1UL, (num_test_splits + num_workers - 1) / num_workers);
|
||||
|
||||
// now compute the sums of vectors that go left for each feature
|
||||
matrix<float,0,1> temp;
|
||||
parallel_for(tp, 0, num_workers, [&](unsigned long block)
|
||||
{
|
||||
const unsigned long block_begin = block * block_size;
|
||||
const unsigned long block_end = std::min(block_begin + block_size, num_test_splits);
|
||||
|
||||
for (unsigned long j = begin; j < end; ++j)
|
||||
{
|
||||
temp = samples[j].target_shape-samples[j].current_shape;
|
||||
for (unsigned long i = 0; i < num_test_splits; ++i)
|
||||
for (unsigned long i = block_begin; i < block_end; ++i)
|
||||
{
|
||||
if (samples[j].feature_pixel_values[feats[i].idx1] - samples[j].feature_pixel_values[feats[i].idx2] > feats[i].thresh)
|
||||
if ((float)samples[j].feature_pixel_values[feats[i].idx1] - (float)samples[j].feature_pixel_values[feats[i].idx2] > feats[i].thresh)
|
||||
{
|
||||
left_sums[i] += temp;
|
||||
left_sums[i] += samples[j].diff_shape;
|
||||
++left_cnt[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}, 1);
|
||||
|
||||
// now figure out which feature is the best
|
||||
double best_score = -1;
|
||||
unsigned long best_feat = 0;
|
||||
matrix<float,0,1> temp;
|
||||
for (unsigned long i = 0; i < num_test_splits; ++i)
|
||||
{
|
||||
// check how well the feature splits the space.
|
||||
@ -944,9 +1010,10 @@ namespace dlib
|
||||
return feats[best_feat];
|
||||
}
|
||||
|
||||
template<typename feature_type>
|
||||
unsigned long partition_samples (
|
||||
const impl::split_feature& split,
|
||||
std::vector<training_sample>& samples,
|
||||
std::vector<training_sample<feature_type>>& samples,
|
||||
unsigned long begin,
|
||||
unsigned long end
|
||||
) const
|
||||
@ -958,7 +1025,7 @@ namespace dlib
|
||||
unsigned long i = begin;
|
||||
for (unsigned long j = begin; j < end; ++j)
|
||||
{
|
||||
if (samples[j].feature_pixel_values[split.idx1] - samples[j].feature_pixel_values[split.idx2] > split.thresh)
|
||||
if ((float)samples[j].feature_pixel_values[split.idx1] - (float)samples[j].feature_pixel_values[split.idx2] > split.thresh)
|
||||
{
|
||||
samples[i].swap(samples[j]);
|
||||
++i;
|
||||
@ -969,9 +1036,10 @@ namespace dlib
|
||||
|
||||
|
||||
|
||||
template<typename feature_type>
|
||||
matrix<float,0,1> populate_training_sample_shapes(
|
||||
const std::vector<std::vector<full_object_detection> >& objects,
|
||||
std::vector<training_sample>& samples
|
||||
std::vector<training_sample<feature_type>>& samples
|
||||
) const
|
||||
{
|
||||
samples.clear();
|
||||
@ -982,7 +1050,7 @@ namespace dlib
|
||||
{
|
||||
for (unsigned long j = 0; j < objects[i].size(); ++j)
|
||||
{
|
||||
training_sample sample;
|
||||
training_sample<feature_type> sample;
|
||||
sample.image_idx = i;
|
||||
sample.rect = objects[i][j].get_rect();
|
||||
object_to_shape(objects[i][j], sample.target_shape, sample.present);
|
||||
@ -1099,6 +1167,7 @@ namespace dlib
|
||||
unsigned long _num_test_splits;
|
||||
double _feature_pool_region_padding;
|
||||
bool _verbose;
|
||||
unsigned long _num_threads;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
@ -148,6 +148,7 @@ namespace dlib
|
||||
- #get_num_test_splits() == 20
|
||||
- #get_feature_pool_region_padding() == 0
|
||||
- #get_random_seed() == ""
|
||||
- #get_num_threads() == 0
|
||||
- This object will not be verbose
|
||||
!*/
|
||||
|
||||
@ -367,6 +368,26 @@ namespace dlib
|
||||
- #get_num_test_splits() == num
|
||||
!*/
|
||||
|
||||
unsigned long get_num_threads (
|
||||
) const;
|
||||
/*!
|
||||
ensures
|
||||
- When running training process, it is possible to make some parts of it parallel
|
||||
using CPU threads with #parallel_for() extension and creating #thread_pool internally
|
||||
When get_num_threads() == 0, trainer will not create threads and all processing will
|
||||
be done in the calling thread
|
||||
!*/
|
||||
|
||||
void set_num_threads (
|
||||
unsigned long num
|
||||
);
|
||||
/*!
|
||||
requires
|
||||
- num >= 0
|
||||
ensures
|
||||
- #get_num_threads() == num
|
||||
!*/
|
||||
|
||||
void be_verbose (
|
||||
);
|
||||
/*!
|
||||
|
@ -108,6 +108,9 @@ int main(int argc, char** argv)
|
||||
trainer.set_nu(0.05);
|
||||
trainer.set_tree_depth(2);
|
||||
|
||||
// some parts of training process can be parellelized.
|
||||
// Trainer will use this count of threads when possible
|
||||
trainer.set_num_threads(2);
|
||||
|
||||
// Tell the trainer to print status messages to the console so we can
|
||||
// see how long the training will take.
|
||||
|
Loading…
Reference in New Issue
Block a user