mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
converted tabs to spaces in the indentation
This commit is contained in:
parent
cd4b62b494
commit
af76e82633
108
dlib/dnn/loss.h
108
dlib/dnn/loss.h
@ -1305,70 +1305,70 @@ namespace dlib
|
|||||||
typename SUB_TYPE,
|
typename SUB_TYPE,
|
||||||
typename label_iterator
|
typename label_iterator
|
||||||
>
|
>
|
||||||
void to_label (
|
void to_label (
|
||||||
const tensor& input_tensor,
|
const tensor& input_tensor,
|
||||||
const SUB_TYPE& sub,
|
const SUB_TYPE& sub,
|
||||||
label_iterator iter
|
label_iterator iter
|
||||||
) const
|
) const
|
||||||
{
|
|
||||||
DLIB_CASSERT(sub.sample_expansion_factor() == 1);
|
|
||||||
|
|
||||||
const tensor& output_tensor = sub.get_output();
|
|
||||||
|
|
||||||
DLIB_CASSERT(output_tensor.nr() == 1 &&
|
|
||||||
output_tensor.nc() == 1 &&
|
|
||||||
output_tensor.k() == 1);
|
|
||||||
DLIB_CASSERT(input_tensor.num_samples() == output_tensor.num_samples());
|
|
||||||
|
|
||||||
const float* out_data = output_tensor.host();
|
|
||||||
for (long i = 0; i < output_tensor.num_samples(); ++i)
|
|
||||||
{
|
{
|
||||||
*iter++ = out_data[i];
|
DLIB_CASSERT(sub.sample_expansion_factor() == 1);
|
||||||
|
|
||||||
|
const tensor& output_tensor = sub.get_output();
|
||||||
|
|
||||||
|
DLIB_CASSERT(output_tensor.nr() == 1 &&
|
||||||
|
output_tensor.nc() == 1 &&
|
||||||
|
output_tensor.k() == 1);
|
||||||
|
DLIB_CASSERT(input_tensor.num_samples() == output_tensor.num_samples());
|
||||||
|
|
||||||
|
const float* out_data = output_tensor.host();
|
||||||
|
for (long i = 0; i < output_tensor.num_samples(); ++i)
|
||||||
|
{
|
||||||
|
*iter++ = out_data[i];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
template <
|
template <
|
||||||
typename const_label_iterator,
|
typename const_label_iterator,
|
||||||
typename SUBNET
|
typename SUBNET
|
||||||
>
|
>
|
||||||
double compute_loss_value_and_gradient (
|
double compute_loss_value_and_gradient (
|
||||||
const tensor& input_tensor,
|
const tensor& input_tensor,
|
||||||
const_label_iterator truth,
|
const_label_iterator truth,
|
||||||
SUBNET& sub
|
SUBNET& sub
|
||||||
) const
|
) const
|
||||||
{
|
|
||||||
const tensor& output_tensor = sub.get_output();
|
|
||||||
tensor& grad = sub.get_gradient_input();
|
|
||||||
|
|
||||||
DLIB_CASSERT(sub.sample_expansion_factor() == 1);
|
|
||||||
DLIB_CASSERT(input_tensor.num_samples() != 0);
|
|
||||||
DLIB_CASSERT(input_tensor.num_samples()%sub.sample_expansion_factor() == 0);
|
|
||||||
DLIB_CASSERT(input_tensor.num_samples() == grad.num_samples());
|
|
||||||
DLIB_CASSERT(input_tensor.num_samples() == output_tensor.num_samples());
|
|
||||||
DLIB_CASSERT(output_tensor.nr() == 1 &&
|
|
||||||
output_tensor.nc() == 1 &&
|
|
||||||
output_tensor.k() == 1);
|
|
||||||
DLIB_CASSERT(grad.nr() == 1 &&
|
|
||||||
grad.nc() == 1 &&
|
|
||||||
grad.k() == 1);
|
|
||||||
|
|
||||||
// The loss we output is the average loss over the mini-batch.
|
|
||||||
const double scale = 1.0/output_tensor.num_samples();
|
|
||||||
double loss = 0;
|
|
||||||
float* g = grad.host_write_only();
|
|
||||||
const float* out_data = output_tensor.host();
|
|
||||||
for (long i = 0; i < output_tensor.num_samples(); ++i)
|
|
||||||
{
|
{
|
||||||
const float y = *truth++;
|
const tensor& output_tensor = sub.get_output();
|
||||||
const float temp1 = y - out_data[i];
|
tensor& grad = sub.get_gradient_input();
|
||||||
const float temp2 = scale*temp1;
|
|
||||||
loss += 0.5*temp2*temp1;
|
|
||||||
g[i] = -temp2;
|
|
||||||
|
|
||||||
|
DLIB_CASSERT(sub.sample_expansion_factor() == 1);
|
||||||
|
DLIB_CASSERT(input_tensor.num_samples() != 0);
|
||||||
|
DLIB_CASSERT(input_tensor.num_samples()%sub.sample_expansion_factor() == 0);
|
||||||
|
DLIB_CASSERT(input_tensor.num_samples() == grad.num_samples());
|
||||||
|
DLIB_CASSERT(input_tensor.num_samples() == output_tensor.num_samples());
|
||||||
|
DLIB_CASSERT(output_tensor.nr() == 1 &&
|
||||||
|
output_tensor.nc() == 1 &&
|
||||||
|
output_tensor.k() == 1);
|
||||||
|
DLIB_CASSERT(grad.nr() == 1 &&
|
||||||
|
grad.nc() == 1 &&
|
||||||
|
grad.k() == 1);
|
||||||
|
|
||||||
|
// The loss we output is the average loss over the mini-batch.
|
||||||
|
const double scale = 1.0/output_tensor.num_samples();
|
||||||
|
double loss = 0;
|
||||||
|
float* g = grad.host_write_only();
|
||||||
|
const float* out_data = output_tensor.host();
|
||||||
|
for (long i = 0; i < output_tensor.num_samples(); ++i)
|
||||||
|
{
|
||||||
|
const float y = *truth++;
|
||||||
|
const float temp1 = y - out_data[i];
|
||||||
|
const float temp2 = scale*temp1;
|
||||||
|
loss += 0.5*temp2*temp1;
|
||||||
|
g[i] = -temp2;
|
||||||
|
|
||||||
|
}
|
||||||
|
return loss;
|
||||||
}
|
}
|
||||||
return loss;
|
|
||||||
}
|
|
||||||
|
|
||||||
friend void serialize(const loss_mean_squared_& , std::ostream& out)
|
friend void serialize(const loss_mean_squared_& , std::ostream& out)
|
||||||
{
|
{
|
||||||
@ -1397,7 +1397,7 @@ namespace dlib
|
|||||||
};
|
};
|
||||||
|
|
||||||
template <typename SUBNET>
|
template <typename SUBNET>
|
||||||
using loss_mean_squared = add_loss_layer<loss_mean_squared_, SUBNET>;
|
using loss_mean_squared = add_loss_layer<loss_mean_squared_, SUBNET>;
|
||||||
|
|
||||||
// ----------------------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
@ -1743,45 +1743,45 @@ namespace
|
|||||||
|
|
||||||
void test_simple_linear_regression()
|
void test_simple_linear_regression()
|
||||||
{
|
{
|
||||||
::std::vector<matrix<double>> x(100);
|
::std::vector<matrix<double>> x(100);
|
||||||
::std::vector<float> y(100);
|
::std::vector<float> y(100);
|
||||||
::std::default_random_engine generator(16);
|
::std::default_random_engine generator(16);
|
||||||
::std::normal_distribution<float> distribution(0,5);
|
::std::normal_distribution<float> distribution(0,5);
|
||||||
const float true_intercept = 50.0;
|
const float true_intercept = 50.0;
|
||||||
const float true_slope = 10.0;
|
const float true_slope = 10.0;
|
||||||
for ( int ii = 0; ii < 100; ++ii )
|
for ( int ii = 0; ii < 100; ++ii )
|
||||||
{
|
{
|
||||||
const double val = static_cast<double>(ii);
|
const double val = static_cast<double>(ii);
|
||||||
matrix<double> tmp(1,1);
|
matrix<double> tmp(1,1);
|
||||||
tmp = val;
|
tmp = val;
|
||||||
x[ii] = tmp;
|
x[ii] = tmp;
|
||||||
y[ii] = (true_intercept + true_slope*static_cast<float>(val) + distribution(generator));
|
y[ii] = (true_intercept + true_slope*static_cast<float>(val) + distribution(generator));
|
||||||
}
|
}
|
||||||
|
|
||||||
using net_type = loss_mean_squared<
|
using net_type = loss_mean_squared<
|
||||||
fc<
|
fc<
|
||||||
1, input<matrix<double>>
|
1, input<matrix<double>>
|
||||||
>
|
>
|
||||||
>;
|
>;
|
||||||
net_type net;
|
net_type net;
|
||||||
layer<1>(net).layer_details().set_bias_learning_rate_multiplier(300);
|
layer<1>(net).layer_details().set_bias_learning_rate_multiplier(300);
|
||||||
sgd defsolver;
|
sgd defsolver;
|
||||||
dnn_trainer<net_type> trainer(net, defsolver);
|
dnn_trainer<net_type> trainer(net, defsolver);
|
||||||
trainer.set_learning_rate(0.00001);
|
trainer.set_learning_rate(0.00001);
|
||||||
trainer.set_mini_batch_size(50);
|
trainer.set_mini_batch_size(50);
|
||||||
trainer.set_max_num_epochs(170);
|
trainer.set_max_num_epochs(170);
|
||||||
trainer.train(x, y);
|
trainer.train(x, y);
|
||||||
|
|
||||||
const float slope = layer<1>(net).layer_details().get_weights().host()[0];
|
const float slope = layer<1>(net).layer_details().get_weights().host()[0];
|
||||||
const float slope_error = abs(true_slope - slope);
|
const float slope_error = abs(true_slope - slope);
|
||||||
const float intercept = layer<1>(net).layer_details().get_biases().host()[0];
|
const float intercept = layer<1>(net).layer_details().get_biases().host()[0];
|
||||||
const float intercept_error = abs(true_intercept - intercept);
|
const float intercept_error = abs(true_intercept - intercept);
|
||||||
const float eps_slope = 0.5, eps_intercept = 1.0;
|
const float eps_slope = 0.5, eps_intercept = 1.0;
|
||||||
|
|
||||||
DLIB_TEST_MSG(slope_error <= eps_slope,
|
DLIB_TEST_MSG(slope_error <= eps_slope,
|
||||||
"Expected slope = " << true_slope << " Estimated slope = " << slope << " Error limit = " << eps_slope);
|
"Expected slope = " << true_slope << " Estimated slope = " << slope << " Error limit = " << eps_slope);
|
||||||
DLIB_TEST_MSG(intercept_error <= eps_intercept,
|
DLIB_TEST_MSG(intercept_error <= eps_intercept,
|
||||||
"Expected intercept = " << true_intercept << " Estimated intercept = " << intercept << " Error limit = " << eps_intercept);
|
"Expected intercept = " << true_intercept << " Estimated intercept = " << intercept << " Error limit = " << eps_intercept);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1852,7 +1852,7 @@ namespace
|
|||||||
test_visit_funcions();
|
test_visit_funcions();
|
||||||
test_copy_tensor_cpu();
|
test_copy_tensor_cpu();
|
||||||
test_concat();
|
test_concat();
|
||||||
test_simple_linear_regression();
|
test_simple_linear_regression();
|
||||||
}
|
}
|
||||||
|
|
||||||
void perform_test()
|
void perform_test()
|
||||||
|
Loading…
Reference in New Issue
Block a user