updated the docs

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402284
This commit is contained in:
Davis King 2008-05-30 23:00:23 +00:00
parent 30bf945095
commit aa2862f148
5 changed files with 25 additions and 0 deletions

View File

@ -112,6 +112,7 @@
<item>probabilistic_decision_function</item> <item>probabilistic_decision_function</item>
<item>krls</item> <item>krls</item>
<item>kcentroid</item> <item>kcentroid</item>
<item>kkmeans</item>
<item>svm_nu_train</item> <item>svm_nu_train</item>
<item>svm_nu_train_prob</item> <item>svm_nu_train_prob</item>
<item>svm_nu_cross_validate</item> <item>svm_nu_cross_validate</item>
@ -790,6 +791,23 @@
</component> </component>
<!-- ************************************************************************* -->
<component>
<name>kkmeans</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/kkmeans_abstract.h</spec_file>
<description>
This is an implementation of a kernelized k-means clustering algorithm.
It performs k-means clustering by using the <a href="#kcentroid">kcentroid</a> object.
</description>
<examples>
<example>kkmeans_ex.cpp.html</example>
</examples>
</component>
<!-- ************************************************************************* --> <!-- ************************************************************************* -->

View File

@ -119,6 +119,7 @@
<li><a href="algorithms.html#svm_nu_train">nu support vector machines</a> for classification</li> <li><a href="algorithms.html#svm_nu_train">nu support vector machines</a> for classification</li>
<li>An online <a href="algorithms.html#krls">kernel RLS regression</a> algorithm</li> <li>An online <a href="algorithms.html#krls">kernel RLS regression</a> algorithm</li>
<li>An online kernelized <a href="algorithms.html#kcentroid">centroid estimator</a></li> <li>An online kernelized <a href="algorithms.html#kcentroid">centroid estimator</a></li>
<li>A kernelized <a href="algorithms.html#kkmeans">k-means</a> clustering algorithm</li>
<li>Bayesian Network inference algorithms such as the <li>Bayesian Network inference algorithms such as the
<a href="algorithms.html#bayesian_network_join_tree">join tree</a> algorithm and <a href="algorithms.html#bayesian_network_join_tree">join tree</a> algorithm and
<a href="algorithms.html#bayesian_network_gibbs_sampler">Gibbs sampler</a> Markov Chain Monte Carlo algorithm</li> <a href="algorithms.html#bayesian_network_gibbs_sampler">Gibbs sampler</a> Markov Chain Monte Carlo algorithm</li>

View File

@ -91,6 +91,10 @@
<name>Kernel_Centroid</name> <name>Kernel_Centroid</name>
<link>kcentroid_ex.cpp.html</link> <link>kcentroid_ex.cpp.html</link>
</item> </item>
<item>
<name>Kernel_K-Means_Clustering</name>
<link>kkmeans_ex.cpp.html</link>
</item>
<item> <item>
<name>Matrix</name> <name>Matrix</name>
<link>matrix_ex.cpp.html</link> <link>matrix_ex.cpp.html</link>

View File

@ -14,6 +14,7 @@
New Stuff: New Stuff:
- Added some macros that allow dlib to create a stack trace - Added some macros that allow dlib to create a stack trace
- Added a kernel based centroid estimator/novelty detector - Added a kernel based centroid estimator/novelty detector
- Added a kernel based k-means clustering algorithm
- Added an identity_matrix() function that can take a runtime defined size. - Added an identity_matrix() function that can take a runtime defined size.
- Added a bunch of unconstrained optimization stuff to the library. - Added a bunch of unconstrained optimization stuff to the library.
It now has a conjugate gradient optimization algorithm as well as It now has a conjugate gradient optimization algorithm as well as

View File

@ -391,6 +391,7 @@
<term link="algorithms.html#point" name="point"/> <term link="algorithms.html#point" name="point"/>
<term link="algorithms.html#krls" name="krls"/> <term link="algorithms.html#krls" name="krls"/>
<term link="algorithms.html#kcentroid" name="kcentroid"/> <term link="algorithms.html#kcentroid" name="kcentroid"/>
<term link="algorithms.html#kkmeans" name="kkmeans"/>
<term link="dlib/svm/svm_abstract.h.html#maximum_nu" name="maximum_nu"/> <term link="dlib/svm/svm_abstract.h.html#maximum_nu" name="maximum_nu"/>