mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
Updated example to use C++11 style code and also to show the new find_max_global() routine.
This commit is contained in:
parent
ed9beffa33
commit
929870d3ad
@ -4,15 +4,16 @@
|
||||
This is an example illustrating the use the general purpose non-linear
|
||||
optimization routines from the dlib C++ Library.
|
||||
|
||||
The library provides implementations of the conjugate gradient, BFGS,
|
||||
L-BFGS, and BOBYQA optimization algorithms. These algorithms allow you to
|
||||
find the minimum of a function of many input variables. This example walks
|
||||
though a few of the ways you might put these routines to use.
|
||||
The library provides implementations of many popular algorithms such as L-BFGS
|
||||
and BOBYQA. These algorithms allow you to find the minimum or maximum of a
|
||||
function of many input variables. This example walks though a few of the ways
|
||||
you might put these routines to use.
|
||||
|
||||
*/
|
||||
|
||||
|
||||
#include <dlib/optimization.h>
|
||||
#include <dlib/global_optimization.h>
|
||||
#include <iostream>
|
||||
|
||||
|
||||
@ -21,8 +22,8 @@ using namespace dlib;
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
// In dlib, the general purpose solvers optimize functions that take a column
|
||||
// vector as input and return a double. So here we make a typedef for a
|
||||
// In dlib, most of the general purpose solvers optimize functions that take a
|
||||
// column vector as input and return a double. So here we make a typedef for a
|
||||
// variable length column vector of doubles. This is the type we will use to
|
||||
// represent the input to our objective functions which we will be minimizing.
|
||||
typedef matrix<double,0,1> column_vector;
|
||||
@ -84,49 +85,6 @@ matrix<double> rosen_hessian (const column_vector& m)
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
class test_function
|
||||
{
|
||||
/*
|
||||
This object is an example of what is known as a "function object" in C++.
|
||||
It is simply an object with an overloaded operator(). This means it can
|
||||
be used in a way that is similar to a normal C function. The interesting
|
||||
thing about this sort of function is that it can have state.
|
||||
|
||||
In this example, our test_function object contains a column_vector
|
||||
as its state and it computes the mean squared error between this
|
||||
stored column_vector and the arguments to its operator() function.
|
||||
|
||||
This is a very simple function, however, in general you could compute
|
||||
any function you wanted here. An example of a typical use would be
|
||||
to find the parameters of some regression function that minimized
|
||||
the mean squared error on a set of data. In this case the arguments
|
||||
to the operator() function would be the parameters of your regression
|
||||
function. You would loop over all your data samples and compute the output
|
||||
of the regression function for each data sample given the parameters and
|
||||
return a measure of the total error. The dlib optimization functions
|
||||
could then be used to find the parameters that minimized the error.
|
||||
*/
|
||||
public:
|
||||
|
||||
test_function (
|
||||
const column_vector& input
|
||||
)
|
||||
{
|
||||
target = input;
|
||||
}
|
||||
|
||||
double operator() ( const column_vector& arg) const
|
||||
{
|
||||
// return the mean squared error between the target vector and the input vector
|
||||
return mean(squared(target-arg));
|
||||
}
|
||||
|
||||
private:
|
||||
column_vector target;
|
||||
};
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
class rosen_model
|
||||
{
|
||||
/*!
|
||||
@ -159,15 +117,13 @@ int main()
|
||||
{
|
||||
try
|
||||
{
|
||||
// make a column vector of length 2
|
||||
column_vector starting_point(2);
|
||||
|
||||
|
||||
// Set the starting point to (4,8). This is the point the optimization algorithm
|
||||
// will start out from and it will move it closer and closer to the function's
|
||||
// minimum point. So generally you want to try and compute a good guess that is
|
||||
// somewhat near the actual optimum value.
|
||||
starting_point = 4, 8;
|
||||
column_vector starting_point = {4, 8};
|
||||
|
||||
// The first example below finds the minimum of the rosen() function and uses the
|
||||
// analytical derivative computed by rosen_derivative(). Since it is very easy to
|
||||
@ -205,7 +161,7 @@ int main()
|
||||
// of find_min() that doesn't require you to supply a derivative function.
|
||||
// This version will compute a numerical approximation of the derivative since
|
||||
// we didn't supply one to it.
|
||||
starting_point = -94, 5.2;
|
||||
starting_point = {-94, 5.2};
|
||||
find_min_using_approximate_derivatives(bfgs_search_strategy(),
|
||||
objective_delta_stop_strategy(1e-7),
|
||||
rosen, starting_point, -1);
|
||||
@ -219,7 +175,7 @@ int main()
|
||||
// The L-BFGS algorithm however uses only O(N) memory. So if you have a
|
||||
// function of a huge number of variables the L-BFGS algorithm is probably
|
||||
// a better choice.
|
||||
starting_point = 0.8, 1.3;
|
||||
starting_point = {0.8, 1.3};
|
||||
find_min(lbfgs_search_strategy(10), // The 10 here is basically a measure of how much memory L-BFGS will use.
|
||||
objective_delta_stop_strategy(1e-7).be_verbose(), // Adding be_verbose() causes a message to be
|
||||
// printed for each iteration of optimization.
|
||||
@ -227,7 +183,7 @@ int main()
|
||||
|
||||
cout << endl << "rosen solution: \n" << starting_point << endl;
|
||||
|
||||
starting_point = -94, 5.2;
|
||||
starting_point = {-94, 5.2};
|
||||
find_min_using_approximate_derivatives(lbfgs_search_strategy(10),
|
||||
objective_delta_stop_strategy(1e-7),
|
||||
rosen, starting_point, -1);
|
||||
@ -240,7 +196,7 @@ int main()
|
||||
// the variables. So for example, if you wanted to find the minimizer
|
||||
// of the rosen function where both input variables were in the range
|
||||
// 0.1 to 0.8 you would do it like this:
|
||||
starting_point = 0.1, 0.1; // Start with a valid point inside the constraint box.
|
||||
starting_point = {0.1, 0.1}; // Start with a valid point inside the constraint box.
|
||||
find_min_box_constrained(lbfgs_search_strategy(10),
|
||||
objective_delta_stop_strategy(1e-9),
|
||||
rosen, rosen_derivative, starting_point, 0.1, 0.8);
|
||||
@ -251,7 +207,7 @@ int main()
|
||||
cout << endl << "constrained rosen solution: \n" << starting_point << endl;
|
||||
|
||||
// You can also use an approximate derivative like so:
|
||||
starting_point = 0.1, 0.1;
|
||||
starting_point = {0.1, 0.1};
|
||||
find_min_box_constrained(bfgs_search_strategy(),
|
||||
objective_delta_stop_strategy(1e-9),
|
||||
rosen, derivative(rosen), starting_point, 0.1, 0.8);
|
||||
@ -262,7 +218,7 @@ int main()
|
||||
|
||||
// In many cases, it is useful if we also provide second derivative information
|
||||
// to the optimizers. Two examples of how we can do that are shown below.
|
||||
starting_point = 0.8, 1.3;
|
||||
starting_point = {0.8, 1.3};
|
||||
find_min(newton_search_strategy(rosen_hessian),
|
||||
objective_delta_stop_strategy(1e-7),
|
||||
rosen,
|
||||
@ -274,7 +230,7 @@ int main()
|
||||
// We can also use find_min_trust_region(), which is also a method which uses
|
||||
// second derivatives. For some kinds of non-convex function it may be more
|
||||
// reliable than using a newton_search_strategy with find_min().
|
||||
starting_point = 0.8, 1.3;
|
||||
starting_point = {0.8, 1.3};
|
||||
find_min_trust_region(objective_delta_stop_strategy(1e-7),
|
||||
rosen_model(),
|
||||
starting_point,
|
||||
@ -285,41 +241,18 @@ int main()
|
||||
|
||||
|
||||
|
||||
// Now let's look at using the test_function object with the optimization
|
||||
// functions.
|
||||
cout << "\nFind the minimum of the test_function" << endl;
|
||||
|
||||
column_vector target(4);
|
||||
starting_point.set_size(4);
|
||||
|
||||
// This variable will be used as the target of the test_function. So,
|
||||
// our simple test_function object will have a global minimum at the
|
||||
// point given by the target. We will then use the optimization
|
||||
// routines to find this minimum value.
|
||||
target = 3, 5, 1, 7;
|
||||
|
||||
// set the starting point far from the global minimum
|
||||
starting_point = 1,2,3,4;
|
||||
find_min_using_approximate_derivatives(bfgs_search_strategy(),
|
||||
objective_delta_stop_strategy(1e-7),
|
||||
test_function(target), starting_point, -1);
|
||||
// At this point the correct value of (3,5,1,7) should be found and stored in starting_point
|
||||
cout << "test_function solution:\n" << starting_point << endl;
|
||||
|
||||
// Now let's try it again with the conjugate gradient algorithm.
|
||||
starting_point = -4,5,99,3;
|
||||
find_min_using_approximate_derivatives(cg_search_strategy(),
|
||||
objective_delta_stop_strategy(1e-7),
|
||||
test_function(target), starting_point, -1);
|
||||
cout << "test_function solution:\n" << starting_point << endl;
|
||||
|
||||
|
||||
|
||||
// Finally, let's try the BOBYQA algorithm. This is a technique specially
|
||||
// Next, let's try the BOBYQA algorithm. This is a technique specially
|
||||
// designed to minimize a function in the absence of derivative information.
|
||||
// Generally speaking, it is the method of choice if derivatives are not available.
|
||||
starting_point = -4,5,99,3;
|
||||
find_min_bobyqa(test_function(target),
|
||||
// Generally speaking, it is the method of choice if derivatives are not available
|
||||
// and the function you are optimizing is smooth and has only one local optima. As
|
||||
// an example, consider the be_like_target function defined below:
|
||||
column_vector target = {3, 5, 1, 7};
|
||||
auto be_like_target = [&](const column_vector& x) {
|
||||
return mean(squared(x-target));
|
||||
};
|
||||
starting_point = {-4,5,99,3};
|
||||
find_min_bobyqa(be_like_target,
|
||||
starting_point,
|
||||
9, // number of interpolation points
|
||||
uniform_matrix<double>(4,1, -1e100), // lower bound constraint
|
||||
@ -328,8 +261,61 @@ int main()
|
||||
1e-6, // stopping trust region radius
|
||||
100 // max number of objective function evaluations
|
||||
);
|
||||
cout << "test_function solution:\n" << starting_point << endl;
|
||||
cout << "be_like_target solution:\n" << starting_point << endl;
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// Finally, let's try the find_max_global() routine. Like
|
||||
// find_max_bobyqa(), this is a technique specially designed to maximize
|
||||
// a function in the absence of derivative information. However, it is
|
||||
// also designed to handle functions with many local optima. Where
|
||||
// BOBYQA would get stuck at the nearest local optima, find_max_global()
|
||||
// won't. find_max_global() uses a global optimization method based on a
|
||||
// combination of non-parametric global function modeling and BOBYQA
|
||||
// style quadratic trust region modeling to efficiently find a global
|
||||
// maximizer. It usually does a good job with a relatively small number
|
||||
// of calls to the function being optimized.
|
||||
//
|
||||
// You also don't have to give it a starting point or set any parameters,
|
||||
// other than defining the bounds constraints. This makes it the method
|
||||
// of choice for derivative free optimization in the presence of local
|
||||
// optima. Its API also allows you to define functions that take a
|
||||
// column_vector as shown above or to explicitly use named doubles as
|
||||
// arguments, which we do here.
|
||||
auto complex_holder_table = [](double x0, double x1)
|
||||
{
|
||||
// This function is a version of the well known Holder table test
|
||||
// function, which is a function containing a bunch of local optima.
|
||||
// Here we make it even more difficult by adding more local optima
|
||||
// and also a bunch of discontinuities.
|
||||
|
||||
// add discontinuities
|
||||
double sign = 1;
|
||||
for (double j = -4; j < 9; j += 0.5)
|
||||
{
|
||||
if (j < x0 && x0 < j+0.5)
|
||||
x0 += sign*0.25;
|
||||
sign *= -1;
|
||||
}
|
||||
// Holder table function tilted towards 10,10 and with additional
|
||||
// high frequency terms to add more local optima.
|
||||
return std::abs(sin(x0)*cos(x1)*exp(std::abs(1-std::sqrt(x0*x0+x1*x1)/pi))) -(x0+x1)/10 - sin(x0*10)*cos(x1*10);
|
||||
};
|
||||
|
||||
// To optimize this difficult function all we need to do is call
|
||||
// find_max_global()
|
||||
auto result = find_max_global(complex_holder_table,
|
||||
{-10,-10}, // lower bounds
|
||||
{10,10}, // upper bounds
|
||||
max_function_calls(300));
|
||||
|
||||
cout.precision(9);
|
||||
// These cout statements will show that find_max_global() found the
|
||||
// globally optimal solution to 9 digits of precision:
|
||||
cout << "complex holder table function solution y (should be 21.9210397): " << result.y << endl;
|
||||
cout << "complex holder table function solution x:\n" << result.x << endl;
|
||||
}
|
||||
catch (std::exception& e)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user