Simplified example to show only the C++11 version of the code.

This commit is contained in:
Davis King 2016-08-30 14:58:38 -04:00
parent 4ee1f6644d
commit 91150823eb

View File

@ -36,25 +36,19 @@ void print(const std::vector<int>& vect)
void example_using_regular_non_parallel_loops(); void example_using_regular_non_parallel_loops();
void example_using_lambda_functions(); void example_using_lambda_functions();
void example_without_using_lambda_functions();
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
int main() int main()
{ {
// We have 3 examples, each contained in a separate function. Each example performs // We have 2 examples, each contained in a separate function. Both examples perform
// exactly the same computation, however, the second two examples do so using parallel // exactly the same computation, however, the second does so using parallel for loops.
// for loops. So the first example is here to show you what we are doing in terms of // The first example is here to show you what we are doing in terms of classical
// classical non-parallel for loops. Then the next two examples will illustrate two // non-parallel for loops. The other example will illustrate how to parallelize the
// ways to parallelize for loops in C++. The first, and simplest way, uses C++11 // for loops in C++11.
// lambda functions. However, since lambda functions are a relatively recent addition
// to C++ we also show how to write parallel for loops without using lambda functions.
// This way, users who don't yet have access to a current C++ compiler can learn to
// write parallel for loops as well.
example_using_regular_non_parallel_loops(); example_using_regular_non_parallel_loops();
example_using_lambda_functions(); example_using_lambda_functions();
example_without_using_lambda_functions();
} }
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
@ -107,22 +101,18 @@ void example_using_regular_non_parallel_loops()
void example_using_lambda_functions() void example_using_lambda_functions()
{ {
// Change the next line to #if 1 if your compiler supports the new C++11 lambda functions.
#if 0
cout << "\nExample using parallel for loops\n" << endl; cout << "\nExample using parallel for loops\n" << endl;
// This variable should be set to the number of processing cores on your computer since
// it determines the amount of parallelism in the for loop.
const unsigned long num_threads = 10;
std::vector<int> vect; std::vector<int> vect;
vect.assign(10, -1); vect.assign(10, -1);
parallel_for(num_threads, 0, vect.size(), [&](long i){ parallel_for(0, vect.size(), [&](long i){
// The i variable is the loop counter as in a normal for loop. So we simply need // The i variable is the loop counter as in a normal for loop. So we simply need
// to place the body of the for loop right here and we get the same behavior. The // to place the body of the for loop right here and we get the same behavior. The
// range for the for loop is determined by the 2nd and 3rd arguments to // range for the for loop is determined by the 1nd and 2rd arguments to
// parallel_for(). // parallel_for(). This way of calling parallel_for() will use a number of threads
// that is appropriate for your hardware. See the parallel_for() documentation for
// other options.
vect[i] = i; vect[i] = i;
dlib::sleep(1000); dlib::sleep(1000);
}); });
@ -131,7 +121,7 @@ void example_using_lambda_functions()
// Assign only part of the elements in vect. // Assign only part of the elements in vect.
vect.assign(10, -1); vect.assign(10, -1);
parallel_for(num_threads, 1, 5, [&](long i){ parallel_for(1, 5, [&](long i){
vect[i] = i; vect[i] = i;
dlib::sleep(1000); dlib::sleep(1000);
}); });
@ -150,7 +140,7 @@ void example_using_lambda_functions()
int sum = 0; int sum = 0;
dlib::mutex m; dlib::mutex m;
vect.assign(10, 2); vect.assign(10, 2);
parallel_for(num_threads, 0, vect.size(), [&](long i){ parallel_for(0, vect.size(), [&](long i){
// The sleep statements still execute in parallel. // The sleep statements still execute in parallel.
dlib::sleep(1000); dlib::sleep(1000);
@ -162,74 +152,6 @@ void example_using_lambda_functions()
}); });
cout << "sum: "<< sum << endl; cout << "sum: "<< sum << endl;
#endif
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// The rest of this example program shows how to create parallel for loops without
// using lambda functions. So the first thing we do is explicitly create function
// objects equivalent to the lambda functions we used. Then we call parallel_for()
// as done above.
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
struct function_object
{
function_object( std::vector<int>& vect_ ) : vect(vect_) {}
std::vector<int>& vect;
void operator() (long i) const
{
vect[i] = i;
dlib::sleep(1000);
}
};
struct function_object_sum
{
function_object_sum( const std::vector<int>& vect_, int& sum_ ) : vect(vect_), sum(sum_) {}
const std::vector<int>& vect;
int& sum;
dlib::mutex m;
void operator() (long i) const
{
dlib::sleep(1000);
auto_mutex lock(m);
sum += vect[i];
}
};
void example_without_using_lambda_functions()
{
// Again, note that this function does exactly the same thing as
// example_using_regular_non_parallel_loops() and example_using_lambda_functions().
cout << "\nExample using parallel for loops and no lambda functions\n" << endl;
const unsigned long num_threads = 10;
std::vector<int> vect;
vect.assign(10, -1);
parallel_for(num_threads, 0, vect.size(), function_object(vect));
print(vect);
vect.assign(10, -1);
parallel_for(num_threads, 1, 5, function_object(vect));
print(vect);
int sum = 0;
vect.assign(10, 2);
function_object_sum funct(vect, sum);
parallel_for(num_threads, 0, vect.size(), funct);
cout << "sum: " << sum << endl;
} }
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------