mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
updated the docs
--HG-- extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402248
This commit is contained in:
parent
385c1d9818
commit
8e51330251
@ -56,6 +56,7 @@
|
||||
<item>decision_function</item>
|
||||
<item>probabilistic_decision_function</item>
|
||||
<item>krls</item>
|
||||
<item>one_class</item>
|
||||
</sub>
|
||||
</item>
|
||||
</section>
|
||||
@ -678,6 +679,28 @@
|
||||
</component>
|
||||
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>one_class</name>
|
||||
<file>dlib/svm.h</file>
|
||||
<spec_file link="true">dlib/svm/one_class_abstract.h</spec_file>
|
||||
<description>
|
||||
This is an implementation of an online algorithm for recursively estimating the
|
||||
center of mass of a sequence of training points. It uses the sparsification technique
|
||||
described in the paper The Kernel Recursive Least Squares Algorithm by Yaakov Engel.
|
||||
|
||||
<p>
|
||||
This object then allows you to compute the distance between the center of mass
|
||||
and any test points. So you can use this object to predict how similar a test
|
||||
point is to the data this object has been trained on (larger distances from the
|
||||
centroid indicate dissimilarity/anomalous points).
|
||||
</p>
|
||||
</description>
|
||||
|
||||
</component>
|
||||
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
|
@ -115,7 +115,8 @@
|
||||
<ul>
|
||||
<li><a href="algorithms.html#mlp">multi layer perceptrons</a> </li>
|
||||
<li><a href="algorithms.html#svm_nu_train">nu support vector machines</a> for classification</li>
|
||||
<li><a href="algorithms.html#krls">kernel RLS regression</a></li>
|
||||
<li>An online <a href="algorithms.html#krls">kernel RLS regression</a> algorithm</li>
|
||||
<li>An online <a href="algorithms.html#one_class">one class classifier</a></li>
|
||||
<li>Bayesian Network inference algorithms such as the
|
||||
<a href="algorithms.html#bayesian_network_join_tree">join tree</a> algorithm and
|
||||
<a href="algorithms.html#bayesian_network_gibbs_sampler">Gibbs sampler</a> Markov Chain Monte Carlo algorithm</li>
|
||||
|
@ -375,6 +375,7 @@
|
||||
<term link="algorithms.html#vector" name="vector"/>
|
||||
<term link="algorithms.html#point" name="point"/>
|
||||
<term link="algorithms.html#krls" name="krls"/>
|
||||
<term link="algorithms.html#one_class" name="one_class"/>
|
||||
|
||||
<term link="dlib/svm/svm_abstract.h.html#maximum_nu" name="maximum_nu"/>
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user