Added overloads of test_graph_labeling_function() and

cross_validate_graph_labeling_trainer() that can incorporate per node
loss values.
This commit is contained in:
Davis King 2012-07-29 20:13:58 -04:00
parent 6eee12f291
commit 8c8c5bf3ce
2 changed files with 139 additions and 10 deletions

View File

@ -20,7 +20,8 @@ namespace dlib
matrix<double,1,2> test_graph_labeling_function (
const graph_labeler& labeler,
const dlib::array<graph_type>& samples,
const std::vector<std::vector<bool> >& labels
const std::vector<std::vector<bool> >& labels,
const std::vector<std::vector<double> >& losses
)
{
#ifdef ENABLE_ASSERTS
@ -31,6 +32,15 @@ namespace dlib
<< "\n\t samples.size(): " << samples.size()
<< "\n\t reason_for_failure: " << reason_for_failure
);
DLIB_ASSERT((losses.size() == 0 || sizes_match(labels, losses) == true) &&
all_values_are_nonnegative(losses) == true,
"\t matrix test_graph_labeling_function()"
<< "\n\t Invalid inputs were given to this function."
<< "\n\t labels.size(): " << labels.size()
<< "\n\t losses.size(): " << losses.size()
<< "\n\t sizes_match(labels,losses): " << sizes_match(labels,losses)
<< "\n\t all_values_are_nonnegative(losses): " << all_values_are_nonnegative(losses)
);
#endif
std::vector<bool> temp;
@ -45,17 +55,21 @@ namespace dlib
for (unsigned long j = 0; j < labels[i].size(); ++j)
{
// What is the loss for this example? It's just 1 unless we have a
// per example loss vector.
const double loss = (losses.size() == 0) ? 1.0 : losses[i][j];
if (labels[i][j])
{
++num_pos;
num_pos += loss;
if (temp[j])
++num_pos_correct;
num_pos_correct += loss;
}
else
{
++num_neg;
num_neg += loss;
if (!temp[j])
++num_neg_correct;
num_neg_correct += loss;
}
}
}
@ -72,6 +86,20 @@ namespace dlib
return res;
}
template <
typename graph_labeler,
typename graph_type
>
matrix<double,1,2> test_graph_labeling_function (
const graph_labeler& labeler,
const dlib::array<graph_type>& samples,
const std::vector<std::vector<bool> >& labels
)
{
std::vector<std::vector<double> > losses;
return test_graph_labeling_function(labeler, samples, labels, losses);
}
// ----------------------------------------------------------------------------------------
template <
@ -82,6 +110,7 @@ namespace dlib
const trainer_type& trainer,
const dlib::array<graph_type>& samples,
const std::vector<std::vector<bool> >& labels,
const std::vector<std::vector<double> >& losses,
const long folds
)
{
@ -98,6 +127,15 @@ namespace dlib
<< "\n\t invalid inputs were given to this function"
<< "\n\t folds: " << folds
);
DLIB_ASSERT((losses.size() == 0 || sizes_match(labels, losses) == true) &&
all_values_are_nonnegative(losses) == true,
"\t matrix cross_validate_graph_labeling_trainer()"
<< "\n\t Invalid inputs were given to this function."
<< "\n\t labels.size(): " << labels.size()
<< "\n\t losses.size(): " << losses.size()
<< "\n\t sizes_match(labels,losses): " << sizes_match(labels,losses)
<< "\n\t all_values_are_nonnegative(losses): " << all_values_are_nonnegative(losses)
);
#endif
typedef std::vector<bool> label_type;
@ -108,6 +146,7 @@ namespace dlib
dlib::array<graph_type> samples_test, samples_train;
std::vector<label_type> labels_test, labels_train;
std::vector<std::vector<double> > losses_test, losses_train;
long next_test_idx = 0;
@ -124,8 +163,10 @@ namespace dlib
{
samples_test.clear();
labels_test.clear();
losses_test.clear();
samples_train.clear();
labels_train.clear();
losses_train.clear();
// load up the test samples
for (long cnt = 0; cnt < num_in_test; ++cnt)
@ -133,6 +174,8 @@ namespace dlib
copy_graph(samples[next_test_idx], gtemp);
samples_test.push_back(gtemp);
labels_test.push_back(labels[next_test_idx]);
if (losses.size() != 0)
losses_test.push_back(losses[next_test_idx]);
next_test_idx = (next_test_idx + 1)%samples.size();
}
@ -143,11 +186,13 @@ namespace dlib
copy_graph(samples[next], gtemp);
samples_train.push_back(gtemp);
labels_train.push_back(labels[next]);
if (losses.size() != 0)
losses_train.push_back(losses[next]);
next = (next + 1)%samples.size();
}
const typename trainer_type::trained_function_type& labeler = trainer.train(samples_train,labels_train);
const typename trainer_type::trained_function_type& labeler = trainer.train(samples_train,labels_train,losses_train);
// check how good labeler is on the test data
for (unsigned long i = 0; i < samples_test.size(); ++i)
@ -155,17 +200,21 @@ namespace dlib
labeler(samples_test[i], temp);
for (unsigned long j = 0; j < labels_test[i].size(); ++j)
{
// What is the loss for this example? It's just 1 unless we have a
// per example loss vector.
const double loss = (losses_test.size() == 0) ? 1.0 : losses_test[i][j];
if (labels_test[i][j])
{
++num_pos;
num_pos += loss;
if (temp[j])
++num_pos_correct;
num_pos_correct += loss;
}
else
{
++num_neg;
num_neg += loss;
if (!temp[j])
++num_neg_correct;
num_neg_correct += loss;
}
}
}
@ -185,6 +234,21 @@ namespace dlib
return res;
}
template <
typename trainer_type,
typename graph_type
>
matrix<double,1,2> cross_validate_graph_labeling_trainer (
const trainer_type& trainer,
const dlib::array<graph_type>& samples,
const std::vector<std::vector<bool> >& labels,
const long folds
)
{
std::vector<std::vector<double> > losses;
return cross_validate_graph_labeling_trainer(trainer, samples, labels, losses, folds);
}
// ----------------------------------------------------------------------------------------
}

View File

@ -39,6 +39,38 @@ namespace dlib
an R of [0,0] indicates that it gets everything wrong.
!*/
// ----------------------------------------------------------------------------------------
template <
typename graph_labeler,
typename graph_type
>
matrix<double,1,2> test_graph_labeling_function (
const graph_labeler& labeler,
const dlib::array<graph_type>& samples,
const std::vector<std::vector<bool> >& labels,
const std::vector<std::vector<double> >& losses
);
/*!
requires
- is_graph_labeling_problem(samples,labels) == true
- graph_labeler == an object with an interface compatible with the
dlib::graph_labeler object.
- the following must be a valid expression: labeler(samples[0]);
- if (losses.size() != 0) then
- sizes_match(labels, losses) == true
- all_values_are_nonnegative(losses) == true
ensures
- This overload of test_graph_labeling_function() does the same thing as the
one defined above, except that instead of counting 1 for each labeling
mistake, it weights each mistake according to the corresponding value in
losses. That is, instead of counting a value of 1 for making a mistake on
samples[i].node(j), this routine counts a value of losses[i][j]. Under this
interpretation, the loss values represent how useful it is to correctly label
each node. Therefore, the values returned represent fractions of overall
labeling utility rather than raw labeling accuracy.
!*/
// ----------------------------------------------------------------------------------------
template <
@ -72,6 +104,39 @@ namespace dlib
- The number of folds used is given by the folds argument.
!*/
// ----------------------------------------------------------------------------------------
template <
typename trainer_type,
typename graph_type
>
matrix<double,1,2> cross_validate_graph_labeling_trainer (
const trainer_type& trainer,
const dlib::array<graph_type>& samples,
const std::vector<std::vector<bool> >& labels,
const std::vector<std::vector<double> >& losses,
const long folds
);
/*!
requires
- is_graph_labeling_problem(samples,labels) == true
- 1 < folds <= samples.size()
- trainer_type == an object which trains some kind of graph labeler object
(e.g. structural_graph_labeling_trainer)
- if (losses.size() != 0) then
- sizes_match(labels, losses) == true
- all_values_are_nonnegative(losses) == true
ensures
- This overload of cross_validate_graph_labeling_trainer() does the same thing
as the one defined above, except that instead of counting 1 for each labeling
mistake, it weights each mistake according to the corresponding value in
losses. That is, instead of counting a value of 1 for making a mistake on
samples[i].node(j), this routine counts a value of losses[i][j]. Under this
interpretation, the loss values represent how useful it is to correctly label
each node. Therefore, the values returned represent fractions of overall
labeling utility rather than raw labeling accuracy.
!*/
// ----------------------------------------------------------------------------------------
}