diff --git a/dlib/test/active_learning.cpp b/dlib/test/active_learning.cpp index b3f277a3a..1870ee808 100644 --- a/dlib/test/active_learning.cpp +++ b/dlib/test/active_learning.cpp @@ -149,13 +149,13 @@ namespace dlog << LINFO << "samples.size(): "<< samples.size(); // When we pick the best/front ranked element then the active learning method - // should do at least as well as random selection. - DLIB_TEST(test_rank_unlabeled_training_samples(samples, labels, max_min_margin, 30, true) >= 1); - DLIB_TEST(test_rank_unlabeled_training_samples(samples, labels, ratio_margin, 30, true) >= 1); + // shouldn't do much worse than random selection (and often much better). + DLIB_TEST(test_rank_unlabeled_training_samples(samples, labels, max_min_margin, 25, true) >= 0.97); + DLIB_TEST(test_rank_unlabeled_training_samples(samples, labels, ratio_margin, 25, true) >= 0.97); // However, picking the worst ranked element should do way worse than random // selection. - DLIB_TEST(test_rank_unlabeled_training_samples(samples, labels, max_min_margin, 30, false) < 1); - DLIB_TEST(test_rank_unlabeled_training_samples(samples, labels, ratio_margin, 30, false) < 1); + DLIB_TEST(test_rank_unlabeled_training_samples(samples, labels, max_min_margin, 25, false) < 0.8); + DLIB_TEST(test_rank_unlabeled_training_samples(samples, labels, ratio_margin, 25, false) < 0.8); } } a;