mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
Added unit tests for cca() and svd_fast()
This commit is contained in:
parent
e7c770f05b
commit
70360c76b4
@ -25,6 +25,7 @@ set (tests
|
||||
bridge.cpp
|
||||
bsp.cpp
|
||||
byte_orderer.cpp
|
||||
cca.cpp
|
||||
clustering.cpp
|
||||
cmd_line_parser.cpp
|
||||
cmd_line_parser_wchar_t.cpp
|
||||
|
347
dlib/test/cca.cpp
Normal file
347
dlib/test/cca.cpp
Normal file
@ -0,0 +1,347 @@
|
||||
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
|
||||
// License: Boost Software License See LICENSE.txt for the full license.
|
||||
|
||||
#include <dlib/statistics.h>
|
||||
#include <dlib/sparse_vector.h>
|
||||
#include <map>
|
||||
|
||||
#include "tester.h"
|
||||
|
||||
namespace
|
||||
{
|
||||
using namespace test;
|
||||
using namespace dlib;
|
||||
using namespace std;
|
||||
|
||||
logger dlog("test.cca");
|
||||
|
||||
dlib::rand rnd;
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
std::vector<std::map<unsigned long, double> > make_really_big_test_matrix (
|
||||
)
|
||||
{
|
||||
std::vector<std::map<unsigned long,double> > temp(30000);
|
||||
for (unsigned long i = 0; i < temp.size(); ++i)
|
||||
{
|
||||
for (int k = 0; k < 30; ++k)
|
||||
temp[i][rnd.get_random_32bit_number()%10000] = 1;
|
||||
}
|
||||
return temp;
|
||||
}
|
||||
|
||||
std::vector<std::map<unsigned long, double> > mat_to_sparse (
|
||||
const matrix<double>& A
|
||||
)
|
||||
{
|
||||
std::vector<std::map<unsigned long,double> > temp(A.nr());
|
||||
for (long r = 0; r < A.nr(); ++r)
|
||||
{
|
||||
for (long c = 0; c < A.nc(); ++c)
|
||||
{
|
||||
temp[r][c] = A(r,c);
|
||||
}
|
||||
}
|
||||
return temp;
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void check_correlation (
|
||||
matrix<double> L,
|
||||
matrix<double> R,
|
||||
const matrix<double>& Ltrans,
|
||||
const matrix<double>& Rtrans,
|
||||
const matrix<double,0,1>& correlations
|
||||
)
|
||||
{
|
||||
// apply the transforms
|
||||
L = L*Ltrans;
|
||||
R = R*Rtrans;
|
||||
|
||||
// compute the real correlation values. Store them in A.
|
||||
matrix<double> A = compute_correlations(L, R);
|
||||
|
||||
for (long i = 0; i < correlations.size(); ++i)
|
||||
{
|
||||
// compare what the measured correlation values are (in A) to the
|
||||
// predicted values.
|
||||
cout << "error: "<< A(i) - correlations(i);
|
||||
}
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void test_cca3()
|
||||
{
|
||||
print_spinner();
|
||||
const unsigned long rank = rnd.get_random_32bit_number()%10 + 1;
|
||||
const unsigned long m = rank + rnd.get_random_32bit_number()%15;
|
||||
const unsigned long n = rank + rnd.get_random_32bit_number()%15;
|
||||
const unsigned long n2 = rank + rnd.get_random_32bit_number()%15;
|
||||
const unsigned long rank2 = rank + rnd.get_random_32bit_number()%5;
|
||||
|
||||
dlog << LINFO << "m: " << m;
|
||||
dlog << LINFO << "n: " << n;
|
||||
dlog << LINFO << "n2: " << n2;
|
||||
dlog << LINFO << "rank: " << rank;
|
||||
dlog << LINFO << "rank2: " << rank2;
|
||||
|
||||
|
||||
matrix<double> L = randm(m,rank, rnd)*randm(rank,n, rnd);
|
||||
//matrix<double> R = randm(m,rank, rnd)*randm(rank,n2, rnd);
|
||||
matrix<double> R = L*randm(n,n2);
|
||||
//matrix<double> L = randm(m,n, rnd);
|
||||
//matrix<double> R = randm(m,n2, rnd);
|
||||
|
||||
matrix<double> Ltrans, Rtrans;
|
||||
matrix<double,0,1> correlations;
|
||||
|
||||
{
|
||||
correlations = cca(L, R, Ltrans, Rtrans, min(m,n), max(n,n2));
|
||||
DLIB_TEST(Ltrans.nc() == Rtrans.nc());
|
||||
dlog << LINFO << "correlations: "<< trans(correlations);
|
||||
|
||||
const double corr_error = max(abs(compute_correlations(tmp(L*Ltrans), tmp(R*Rtrans)) - correlations));
|
||||
dlog << LINFO << "correlation error: "<< corr_error;
|
||||
DLIB_TEST(corr_error < 1e-13);
|
||||
|
||||
const double trans_error = max(abs(L*Ltrans - R*Rtrans));
|
||||
dlog << LINFO << "trans_error: "<< trans_error;
|
||||
DLIB_TEST(trans_error < 1e-10);
|
||||
}
|
||||
{
|
||||
correlations = cca(mat_to_sparse(L), mat_to_sparse(R), Ltrans, Rtrans, min(m,n), max(n,n2));
|
||||
DLIB_TEST(Ltrans.nc() == Rtrans.nc());
|
||||
dlog << LINFO << "correlations: "<< trans(correlations);
|
||||
|
||||
const double corr_error = max(abs(compute_correlations(tmp(L*Ltrans), tmp(R*Rtrans)) - correlations));
|
||||
dlog << LINFO << "correlation error: "<< corr_error;
|
||||
DLIB_TEST(corr_error < 1e-12);
|
||||
|
||||
const double trans_error = max(abs(L*Ltrans - R*Rtrans));
|
||||
dlog << LINFO << "trans_error: "<< trans_error;
|
||||
DLIB_TEST(trans_error < 1e-10);
|
||||
}
|
||||
|
||||
dlog << LINFO << "*****************************************************";
|
||||
}
|
||||
|
||||
void test_cca2()
|
||||
{
|
||||
print_spinner();
|
||||
const unsigned long rank = rnd.get_random_32bit_number()%10 + 1;
|
||||
const unsigned long m = rank + rnd.get_random_32bit_number()%15;
|
||||
const unsigned long n = rank + rnd.get_random_32bit_number()%15;
|
||||
const unsigned long n2 = rank + rnd.get_random_32bit_number()%15;
|
||||
|
||||
dlog << LINFO << "m: " << m;
|
||||
dlog << LINFO << "n: " << n;
|
||||
dlog << LINFO << "n2: " << n2;
|
||||
dlog << LINFO << "rank: " << rank;
|
||||
|
||||
|
||||
matrix<double> L = randm(m,n, rnd);
|
||||
matrix<double> R = randm(m,n2, rnd);
|
||||
|
||||
matrix<double> Ltrans, Rtrans;
|
||||
matrix<double,0,1> correlations;
|
||||
|
||||
{
|
||||
correlations = cca(L, R, Ltrans, Rtrans, min(n,n2), max(n,n2)-min(n,n2));
|
||||
DLIB_TEST(Ltrans.nc() == Rtrans.nc());
|
||||
dlog << LINFO << "correlations: "<< trans(correlations);
|
||||
|
||||
const double corr_error = max(abs(compute_correlations(tmp(L*Ltrans), tmp(R*Rtrans)) - correlations));
|
||||
dlog << LINFO << "correlation error: "<< corr_error;
|
||||
DLIB_TEST(corr_error < 1e-13);
|
||||
}
|
||||
{
|
||||
correlations = cca(mat_to_sparse(L), mat_to_sparse(R), Ltrans, Rtrans, min(n,n2), max(n,n2)-min(n,n2));
|
||||
DLIB_TEST(Ltrans.nc() == Rtrans.nc());
|
||||
dlog << LINFO << "correlations: "<< trans(correlations);
|
||||
|
||||
const double corr_error = max(abs(compute_correlations(tmp(L*Ltrans), tmp(R*Rtrans)) - correlations));
|
||||
dlog << LINFO << "correlation error: "<< corr_error;
|
||||
DLIB_TEST(corr_error < 1e-13);
|
||||
}
|
||||
|
||||
dlog << LINFO << "*****************************************************";
|
||||
}
|
||||
|
||||
void test_cca1()
|
||||
{
|
||||
print_spinner();
|
||||
const unsigned long rank = rnd.get_random_32bit_number()%10 + 1;
|
||||
const unsigned long m = rank + rnd.get_random_32bit_number()%15;
|
||||
const unsigned long n = rank + rnd.get_random_32bit_number()%15;
|
||||
|
||||
dlog << LINFO << "m: " << m;
|
||||
dlog << LINFO << "n: " << n;
|
||||
dlog << LINFO << "rank: " << rank;
|
||||
|
||||
matrix<double> T = randm(n,n, rnd);
|
||||
|
||||
matrix<double> L = randm(m,rank, rnd)*randm(rank,n, rnd);
|
||||
//matrix<double> L = randm(m,n, rnd);
|
||||
matrix<double> R = L*T;
|
||||
|
||||
matrix<double> Ltrans, Rtrans;
|
||||
matrix<double,0,1> correlations;
|
||||
|
||||
{
|
||||
correlations = cca(L, R, Ltrans, Rtrans, rank);
|
||||
DLIB_TEST(Ltrans.nc() == Rtrans.nc());
|
||||
const double corr_error = max(abs(compute_correlations(tmp(L*Ltrans), tmp(R*Rtrans)) - correlations));
|
||||
dlog << LINFO << "correlation error: "<< corr_error;
|
||||
DLIB_TEST(corr_error < 1e-13);
|
||||
|
||||
const double trans_error = max(abs(L*Ltrans - R*Rtrans));
|
||||
dlog << LINFO << "trans_error: "<< trans_error;
|
||||
DLIB_TEST(trans_error < 1e-10);
|
||||
|
||||
dlog << LINFO << "correlations: "<< trans(correlations);
|
||||
}
|
||||
{
|
||||
correlations = cca(mat_to_sparse(L), mat_to_sparse(R), Ltrans, Rtrans, rank);
|
||||
DLIB_TEST(Ltrans.nc() == Rtrans.nc());
|
||||
const double corr_error = max(abs(compute_correlations(tmp(L*Ltrans), tmp(R*Rtrans)) - correlations));
|
||||
dlog << LINFO << "correlation error: "<< corr_error;
|
||||
DLIB_TEST(corr_error < 1e-13);
|
||||
|
||||
const double trans_error = max(abs(L*Ltrans - R*Rtrans));
|
||||
dlog << LINFO << "trans_error: "<< trans_error;
|
||||
DLIB_TEST(trans_error < 1e-9);
|
||||
|
||||
dlog << LINFO << "correlations: "<< trans(correlations);
|
||||
}
|
||||
|
||||
dlog << LINFO << "*****************************************************";
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void test_svd_fast(
|
||||
long rank,
|
||||
long m,
|
||||
long n
|
||||
)
|
||||
{
|
||||
print_spinner();
|
||||
matrix<double> A = randm(m,rank,rnd)*randm(rank,n,rnd);
|
||||
matrix<double> u,v;
|
||||
matrix<double,0,1> w;
|
||||
|
||||
dlog << LINFO << "rank: "<< rank;
|
||||
dlog << LINFO << "m: "<< m;
|
||||
dlog << LINFO << "n: "<< n;
|
||||
|
||||
svd_fast(A, u, w, v, rank, 2);
|
||||
DLIB_TEST(u.nr() == m);
|
||||
DLIB_TEST(u.nc() == rank);
|
||||
DLIB_TEST(w.nr() == rank);
|
||||
DLIB_TEST(w.nc() == 1);
|
||||
DLIB_TEST(v.nr() == n);
|
||||
DLIB_TEST(v.nc() == rank);
|
||||
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
|
||||
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-13);
|
||||
svd_fast(mat_to_sparse(A), u, w, v, rank, 2);
|
||||
DLIB_TEST(u.nr() == m);
|
||||
DLIB_TEST(u.nc() == rank);
|
||||
DLIB_TEST(w.nr() == rank);
|
||||
DLIB_TEST(w.nc() == 1);
|
||||
DLIB_TEST(v.nr() == n);
|
||||
DLIB_TEST(v.nc() == rank);
|
||||
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-13);
|
||||
|
||||
svd_fast(A, u, w, v, rank, 0);
|
||||
DLIB_TEST(u.nr() == m);
|
||||
DLIB_TEST(u.nc() == rank);
|
||||
DLIB_TEST(w.nr() == rank);
|
||||
DLIB_TEST(w.nc() == 1);
|
||||
DLIB_TEST(v.nr() == n);
|
||||
DLIB_TEST(v.nc() == rank);
|
||||
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST_MSG(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-9,max(abs(tmp(A - u*diagm(w)*trans(v)))));
|
||||
svd_fast(mat_to_sparse(A), u, w, v, rank, 0);
|
||||
DLIB_TEST(u.nr() == m);
|
||||
DLIB_TEST(u.nc() == rank);
|
||||
DLIB_TEST(w.nr() == rank);
|
||||
DLIB_TEST(w.nc() == 1);
|
||||
DLIB_TEST(v.nr() == n);
|
||||
DLIB_TEST(v.nc() == rank);
|
||||
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-11);
|
||||
|
||||
svd_fast(A, u, w, v, rank+5, 0);
|
||||
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-11);
|
||||
svd_fast(mat_to_sparse(A), u, w, v, rank+5, 0);
|
||||
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-11);
|
||||
svd_fast(A, u, w, v, rank+5, 1);
|
||||
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-12);
|
||||
svd_fast(mat_to_sparse(A), u, w, v, rank+5, 1);
|
||||
DLIB_TEST(max(abs(trans(u)*u - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(trans(v)*v - identity_matrix<double>(u.nc()))) < 1e-13);
|
||||
DLIB_TEST(max(abs(tmp(A - u*diagm(w)*trans(v)))) < 1e-12);
|
||||
}
|
||||
|
||||
void test_svd_fast()
|
||||
{
|
||||
for (int iter = 0; iter < 1000; ++iter)
|
||||
{
|
||||
const unsigned long rank = rnd.get_random_32bit_number()%10 + 1;
|
||||
const unsigned long m = rank + rnd.get_random_32bit_number()%10;
|
||||
const unsigned long n = rank + rnd.get_random_32bit_number()%10;
|
||||
|
||||
test_svd_fast(rank, m, n);
|
||||
|
||||
}
|
||||
test_svd_fast(1, 1, 1);
|
||||
test_svd_fast(1, 2, 2);
|
||||
test_svd_fast(1, 1, 2);
|
||||
test_svd_fast(1, 2, 1);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
class test_cca : public tester
|
||||
{
|
||||
public:
|
||||
test_cca (
|
||||
) :
|
||||
tester ("test_cca",
|
||||
"Runs tests on the cca() and svd_fast() routines.")
|
||||
{}
|
||||
|
||||
void perform_test (
|
||||
)
|
||||
{
|
||||
for (int i = 0; i < 200; ++i)
|
||||
{
|
||||
test_cca1();
|
||||
test_cca2();
|
||||
test_cca3();
|
||||
}
|
||||
test_svd_fast();
|
||||
}
|
||||
} a;
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -41,6 +41,7 @@ SRC += binary_search_tree_mm2.cpp
|
||||
SRC += bridge.cpp
|
||||
SRC += bsp.cpp
|
||||
SRC += byte_orderer.cpp
|
||||
SRC += cca.cpp
|
||||
SRC += clustering.cpp
|
||||
SRC += cmd_line_parser.cpp
|
||||
SRC += cmd_line_parser_wchar_t.cpp
|
||||
|
Loading…
Reference in New Issue
Block a user