diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 677dd9269..7b9304681 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -48,6 +48,7 @@ add_example(pipe_ex) add_example(queue_ex) add_example(rank_features_ex) add_example(rvm_ex) +add_example(rvm_regression_ex) add_example(server_http_ex) add_example(sockets_ex) add_example(sockets_ex_2) diff --git a/examples/rvm_regression_ex.cpp b/examples/rvm_regression_ex.cpp new file mode 100644 index 000000000..cbb8867d4 --- /dev/null +++ b/examples/rvm_regression_ex.cpp @@ -0,0 +1,75 @@ +/* + This is an example illustrating the use of the RVM regression object + from the dlib C++ Library. + + This example will train on data from the sinc function. + +*/ + +#include +#include + +#include "dlib/svm.h" + +using namespace std; +using namespace dlib; + +// Here is the sinc function we will be trying to learn with rvm regression +double sinc(double x) +{ + if (x == 0) + return 1; + return sin(x)/x; +} + +int main() +{ + // Here we declare that our samples will be 1 dimensional column vectors. + typedef matrix sample_type; + + // Now we are making a typedef for the kind of kernel we want to use. I picked the + // radial basis kernel because it only has one parameter and generally gives good + // results without much fiddling. + typedef radial_basis_kernel kernel_type; + + // Here we declare an instance of the rvm_regression_trainer object. This is the + // object that we will later use to do the training. + rvm_regression_trainer trainer; + // Here we set the kernel we want to use for training. The 0.05 is the gamma + // parameter to the radial_basis_kernel. + trainer.set_kernel(kernel_type(0.05)); + + // Now sample some points from the sinc() function + sample_type m; + std::vector samples; + std::vector labels; + for (double x = -10; x <= 4; x += 1) + { + m(0) = x; + samples.push_back(m); + labels.push_back(sinc(x)); + } + + // now train a function based on our sample points + decision_function test = trainer.train(samples, labels); + + // now we output the value of the sinc function for a few test points as well as the + // value predicted by our regression. + m(0) = 2.5; cout << sinc(m(0)) << " " << test(m) << endl; + m(0) = 0.1; cout << sinc(m(0)) << " " << test(m) << endl; + m(0) = -4; cout << sinc(m(0)) << " " << test(m) << endl; + m(0) = 5.0; cout << sinc(m(0)) << " " << test(m) << endl; + + // The output is as follows: + //0.239389 0.240989 + //0.998334 0.999538 + //-0.189201 -0.188453 + //-0.191785 -0.226516 + + + // The first column is the true value of the sinc function and the second + // column is the output from the rvm estimate. + +} + +