Fully setup the functional python interface to the sequence segmenter tool.

Need to add documentation next.
This commit is contained in:
Davis King 2013-05-22 23:47:33 -04:00
parent bb0f764ca8
commit 66d5a906bb

View File

@ -12,7 +12,7 @@ using namespace dlib;
using namespace std;
using namespace boost::python;
typedef matrix<double,0,1> sample_type;
typedef matrix<double,0,1> dense_vect;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
typedef std::vector<std::pair<unsigned long, unsigned long> > ranges;
@ -33,7 +33,7 @@ public:
unsigned long _window_size;
segmenter_feature_extractor(
) : _num_features(0), _window_size(0) {}
) : _num_features(1), _window_size(1) {}
segmenter_feature_extractor(
unsigned long _num_features_,
@ -49,7 +49,7 @@ public:
template <typename feature_setter>
void get_features (
feature_setter& set_feature,
const std::vector<sample_type>& x,
const std::vector<dense_vect>& x,
unsigned long position
) const
{
@ -88,17 +88,54 @@ public:
struct segmenter_type
{
segmenter_type() : mode(0)
/*!
WHAT THIS OBJECT REPRESENTS
This the object that python will use directly to represent a
sequence_segmenter. All it does is contain all the possible template
instantiations of a sequence_segmenter and invoke the right one depending on
the mode variable.
!*/
segmenter_type() : mode(-1)
{ }
ranges segment_sequence (
const std::vector<sample_type>& x
ranges segment_sequence_dense (
const std::vector<dense_vect>& x
) const
{
return ranges();
switch (mode)
{
case 0: return segmenter0(x);
case 1: return segmenter1(x);
case 2: return segmenter2(x);
case 3: return segmenter3(x);
case 4: return segmenter4(x);
case 5: return segmenter5(x);
case 6: return segmenter6(x);
case 7: return segmenter7(x);
default: throw dlib::error("Invalid mode");
}
}
const matrix<double,0,1>& get_weights()
ranges segment_sequence_sparse (
const std::vector<sparse_vect>& x
) const
{
switch (mode)
{
case 8: return segmenter8(x);
case 9: return segmenter9(x);
case 10: return segmenter10(x);
case 11: return segmenter11(x);
case 12: return segmenter12(x);
case 13: return segmenter13(x);
case 14: return segmenter14(x);
case 15: return segmenter15(x);
default: throw dlib::error("Invalid mode");
}
}
const matrix<double,0,1> get_weights()
{
switch(mode)
{
@ -110,6 +147,17 @@ struct segmenter_type
case 5: return segmenter5.get_weights();
case 6: return segmenter6.get_weights();
case 7: return segmenter7.get_weights();
case 8: return segmenter8.get_weights();
case 9: return segmenter9.get_weights();
case 10: return segmenter10.get_weights();
case 11: return segmenter11.get_weights();
case 12: return segmenter12.get_weights();
case 13: return segmenter13.get_weights();
case 14: return segmenter14.get_weights();
case 15: return segmenter15.get_weights();
default: throw dlib::error("Invalid mode");
}
}
@ -126,6 +174,16 @@ struct segmenter_type
case 5: serialize(item.segmenter5, out); break;
case 6: serialize(item.segmenter6, out); break;
case 7: serialize(item.segmenter7, out); break;
case 8: serialize(item.segmenter8, out); break;
case 9: serialize(item.segmenter9, out); break;
case 10: serialize(item.segmenter10, out); break;
case 11: serialize(item.segmenter11, out); break;
case 12: serialize(item.segmenter12, out); break;
case 13: serialize(item.segmenter13, out); break;
case 14: serialize(item.segmenter14, out); break;
case 15: serialize(item.segmenter15, out); break;
default: throw dlib::error("Invalid mode");
}
}
friend void deserialize (segmenter_type& item, std::istream& in)
@ -141,19 +199,29 @@ struct segmenter_type
case 5: deserialize(item.segmenter5, in); break;
case 6: deserialize(item.segmenter6, in); break;
case 7: deserialize(item.segmenter7, in); break;
case 8: deserialize(item.segmenter8, in); break;
case 9: deserialize(item.segmenter9, in); break;
case 10: deserialize(item.segmenter10, in); break;
case 11: deserialize(item.segmenter11, in); break;
case 12: deserialize(item.segmenter12, in); break;
case 13: deserialize(item.segmenter13, in); break;
case 14: deserialize(item.segmenter14, in); break;
case 15: deserialize(item.segmenter15, in); break;
default: throw dlib::error("Invalid mode");
}
}
int mode;
typedef segmenter_feature_extractor<sample_type, true, true, true> fe0;
typedef segmenter_feature_extractor<sample_type, true, true, false> fe1;
typedef segmenter_feature_extractor<sample_type, true, false,true> fe2;
typedef segmenter_feature_extractor<sample_type, true, false,false> fe3;
typedef segmenter_feature_extractor<sample_type, false,true, true> fe4;
typedef segmenter_feature_extractor<sample_type, false,true, false> fe5;
typedef segmenter_feature_extractor<sample_type, false,false,true> fe6;
typedef segmenter_feature_extractor<sample_type, false,false,false> fe7;
typedef segmenter_feature_extractor<dense_vect, false,false,false> fe0;
typedef segmenter_feature_extractor<dense_vect, false,false,true> fe1;
typedef segmenter_feature_extractor<dense_vect, false,true, false> fe2;
typedef segmenter_feature_extractor<dense_vect, false,true, true> fe3;
typedef segmenter_feature_extractor<dense_vect, true, false,false> fe4;
typedef segmenter_feature_extractor<dense_vect, true, false,true> fe5;
typedef segmenter_feature_extractor<dense_vect, true, true, false> fe6;
typedef segmenter_feature_extractor<dense_vect, true, true, true> fe7;
sequence_segmenter<fe0> segmenter0;
sequence_segmenter<fe1> segmenter1;
sequence_segmenter<fe2> segmenter2;
@ -163,14 +231,14 @@ struct segmenter_type
sequence_segmenter<fe6> segmenter6;
sequence_segmenter<fe7> segmenter7;
typedef segmenter_feature_extractor<sparse_vect, true, true, true> fe8;
typedef segmenter_feature_extractor<sparse_vect, true, true, false> fe9;
typedef segmenter_feature_extractor<sparse_vect, true, false,true> fe10;
typedef segmenter_feature_extractor<sparse_vect, true, false,false> fe11;
typedef segmenter_feature_extractor<sparse_vect, false,true, true> fe12;
typedef segmenter_feature_extractor<sparse_vect, false,true, false> fe13;
typedef segmenter_feature_extractor<sparse_vect, false,false,true> fe14;
typedef segmenter_feature_extractor<sparse_vect, false,false,false> fe15;
typedef segmenter_feature_extractor<sparse_vect, false,false,false> fe8;
typedef segmenter_feature_extractor<sparse_vect, false,false,true> fe9;
typedef segmenter_feature_extractor<sparse_vect, false,true, false> fe10;
typedef segmenter_feature_extractor<sparse_vect, false,true, true> fe11;
typedef segmenter_feature_extractor<sparse_vect, true, false,false> fe12;
typedef segmenter_feature_extractor<sparse_vect, true, false,true> fe13;
typedef segmenter_feature_extractor<sparse_vect, true, true, false> fe14;
typedef segmenter_feature_extractor<sparse_vect, true, true, true> fe15;
sequence_segmenter<fe8> segmenter8;
sequence_segmenter<fe9> segmenter9;
sequence_segmenter<fe10> segmenter10;
@ -195,6 +263,7 @@ struct segmenter_params
num_threads = 4;
epsilon = 0.1;
max_cache_size = 40;
be_verbose = false;
C = 100;
}
@ -209,11 +278,77 @@ struct segmenter_params
double C;
};
string segmenter_params__str__(const segmenter_params& p)
{
ostringstream sout;
if (p.use_BIO_model)
sout << "BIO,";
else
sout << "BILOU,";
if (p.use_high_order_features)
sout << "highFeats,";
else
sout << "lowFeats,";
if (p.allow_negative_weights)
sout << "signed,";
else
sout << "non-negative,";
sout << "win="<<p.window_size << ",";
sout << "threads="<<p.num_threads << ",";
sout << "eps="<<p.epsilon << ",";
sout << "cache="<<p.max_cache_size << ",";
if (p.be_verbose)
sout << "verbose,";
else
sout << "non-verbose,";
sout << "C="<<p.C;
return trim(sout.str());
}
string segmenter_params__repr__(const segmenter_params& p)
{
ostringstream sout;
sout << "<";
sout << segmenter_params__str__(p);
sout << ">";
return sout.str();
}
void serialize ( const segmenter_params& item, std::ostream& out)
{
serialize(item.use_BIO_model, out);
serialize(item.use_high_order_features, out);
serialize(item.allow_negative_weights, out);
serialize(item.window_size, out);
serialize(item.num_threads, out);
serialize(item.epsilon, out);
serialize(item.max_cache_size, out);
serialize(item.be_verbose, out);
serialize(item.C, out);
}
void deserialize (segmenter_params& item, std::istream& in)
{
deserialize(item.use_BIO_model, in);
deserialize(item.use_high_order_features, in);
deserialize(item.allow_negative_weights, in);
deserialize(item.window_size, in);
deserialize(item.num_threads, in);
deserialize(item.epsilon, in);
deserialize(item.max_cache_size, in);
deserialize(item.be_verbose, in);
deserialize(item.C, in);
}
// ----------------------------------------------------------------------------------------
template <typename T>
void configure_trainer (
const std::vector<std::vector<sample_type> >& samples,
const std::vector<std::vector<dense_vect> >& samples,
structural_sequence_segmentation_trainer<T>& trainer,
const segmenter_params& params
)
@ -233,8 +368,35 @@ void configure_trainer (
// ----------------------------------------------------------------------------------------
template <typename T>
void configure_trainer (
const std::vector<std::vector<sparse_vect> >& samples,
structural_sequence_segmentation_trainer<T>& trainer,
const segmenter_params& params
)
{
pyassert(samples.size() != 0, "Invalid arguments. You must give some training sequences.");
pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences.");
unsigned long dims = 0;
for (unsigned long i = 0; i < samples.size(); ++i)
{
dims = std::max(dims, max_index_plus_one(samples[i]));
}
trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size));
trainer.set_num_threads(params.num_threads);
trainer.set_epsilon(params.epsilon);
trainer.set_max_cache_size(params.max_cache_size);
trainer.set_c(params.C);
if (params.be_verbose)
trainer.be_verbose();
}
// ----------------------------------------------------------------------------------------
segmenter_type train_dense (
const std::vector<std::vector<sample_type> >& samples,
const std::vector<std::vector<dense_vect> >& samples,
const std::vector<ranges>& segments,
segmenter_params params
)
@ -255,6 +417,7 @@ segmenter_type train_dense (
else
mode = mode*2;
segmenter_type res;
res.mode = mode;
switch(mode)
@ -291,6 +454,76 @@ segmenter_type train_dense (
configure_trainer(samples, trainer, params);
res.segmenter7 = trainer.train(samples, segments);
} break;
default: throw dlib::error("Invalid mode");
}
return res;
}
// ----------------------------------------------------------------------------------------
segmenter_type train_sparse (
const std::vector<std::vector<sparse_vect> >& samples,
const std::vector<ranges>& segments,
segmenter_params params
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
int mode = 0;
if (params.use_BIO_model)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.use_high_order_features)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.allow_negative_weights)
mode = mode*2 + 1;
else
mode = mode*2;
mode += 8;
segmenter_type res;
res.mode = mode;
switch(mode)
{
case 8: { structural_sequence_segmentation_trainer<segmenter_type::fe8> trainer;
configure_trainer(samples, trainer, params);
res.segmenter8 = trainer.train(samples, segments);
} break;
case 9: { structural_sequence_segmentation_trainer<segmenter_type::fe9> trainer;
configure_trainer(samples, trainer, params);
res.segmenter9 = trainer.train(samples, segments);
} break;
case 10: { structural_sequence_segmentation_trainer<segmenter_type::fe10> trainer;
configure_trainer(samples, trainer, params);
res.segmenter10 = trainer.train(samples, segments);
} break;
case 11: { structural_sequence_segmentation_trainer<segmenter_type::fe11> trainer;
configure_trainer(samples, trainer, params);
res.segmenter11 = trainer.train(samples, segments);
} break;
case 12: { structural_sequence_segmentation_trainer<segmenter_type::fe12> trainer;
configure_trainer(samples, trainer, params);
res.segmenter12 = trainer.train(samples, segments);
} break;
case 13: { structural_sequence_segmentation_trainer<segmenter_type::fe13> trainer;
configure_trainer(samples, trainer, params);
res.segmenter13 = trainer.train(samples, segments);
} break;
case 14: { structural_sequence_segmentation_trainer<segmenter_type::fe14> trainer;
configure_trainer(samples, trainer, params);
res.segmenter14 = trainer.train(samples, segments);
} break;
case 15: { structural_sequence_segmentation_trainer<segmenter_type::fe15> trainer;
configure_trainer(samples, trainer, params);
res.segmenter15 = trainer.train(samples, segments);
} break;
default: throw dlib::error("Invalid mode");
}
@ -304,21 +537,27 @@ void bind_sequence_segmenter()
class_<segmenter_params>("segmenter_params",
"This class is used to define all the optional parameters to the \n\
train_sequence_segmenter() routine. ")
.add_property("use_BIO_model", &segmenter_params::use_BIO_model)
.add_property("use_high_order_features", &segmenter_params::use_high_order_features)
.add_property("allow_negative_weights", &segmenter_params::allow_negative_weights)
.add_property("window_size", &segmenter_params::window_size)
.add_property("num_threads", &segmenter_params::num_threads)
.add_property("epsilon", &segmenter_params::epsilon)
.add_property("max_cache_size", &segmenter_params::max_cache_size)
.add_property("C", &segmenter_params::C);
.def_readwrite("use_BIO_model", &segmenter_params::use_BIO_model)
.def_readwrite("use_high_order_features", &segmenter_params::use_high_order_features)
.def_readwrite("allow_negative_weights", &segmenter_params::allow_negative_weights)
.def_readwrite("window_size", &segmenter_params::window_size)
.def_readwrite("num_threads", &segmenter_params::num_threads)
.def_readwrite("epsilon", &segmenter_params::epsilon)
.def_readwrite("max_cache_size", &segmenter_params::max_cache_size)
.def_readwrite("C", &segmenter_params::C, "SVM C parameter")
.def("__repr__",&segmenter_params__repr__)
.def("__str__",&segmenter_params__str__)
.def_pickle(serialize_pickle<segmenter_params>());
class_<segmenter_type> ("segmenter_type")
.def("segment_sequence", &segmenter_type::segment_sequence)
.def("segment_sequence", &segmenter_type::segment_sequence_dense)
.def("segment_sequence", &segmenter_type::segment_sequence_sparse)
.def_readonly("weights", &segmenter_type::get_weights)
.def_pickle(serialize_pickle<segmenter_type>());
using boost::python::arg;
def("train_sequence_segmenter", train_dense, (arg("samples"), arg("segments"), arg("params")=segmenter_params()));
def("train_sequence_segmenter", train_sparse, (arg("samples"), arg("segments"), arg("params")=segmenter_params()));
}