mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
Added solve_trust_region_subproblem_bounded()
This commit is contained in:
parent
1e90fc6dbd
commit
61b6c1ff78
@ -225,6 +225,168 @@ namespace dlib
|
||||
return max_iter+1;
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
namespace impl
|
||||
{
|
||||
template <
|
||||
typename EXP1,
|
||||
typename EXP2,
|
||||
typename EXP3
|
||||
>
|
||||
bool bounds_violated (
|
||||
const matrix_exp<EXP1>& v,
|
||||
const matrix_exp<EXP2>& l,
|
||||
const matrix_exp<EXP3>& u
|
||||
)
|
||||
{
|
||||
DLIB_ASSERT(v.nr() == l.nr() && v.nr() == u.nr());
|
||||
DLIB_ASSERT(v.nc() == l.nc() && v.nc() == u.nc());
|
||||
for (long r = 0; r < v.nr(); ++r)
|
||||
{
|
||||
for (long c = 0; c < v.nc(); c++)
|
||||
{
|
||||
if (!(l(r,c) <= v(r,c) && v(r,c) <= u(r,c)))
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
template <
|
||||
typename EXP1,
|
||||
typename EXP2,
|
||||
typename T, long NR, long NC, typename MM, typename L,
|
||||
typename EXP3
|
||||
>
|
||||
void solve_trust_region_subproblem_bounded (
|
||||
const matrix_exp<EXP1>& B_,
|
||||
const matrix_exp<EXP2>& g_,
|
||||
const typename EXP1::type radius_,
|
||||
matrix<T,NR,NC,MM,L>& p_,
|
||||
double eps,
|
||||
unsigned long max_iter,
|
||||
const matrix_exp<EXP3>& lower_,
|
||||
const matrix_exp<EXP3>& upper_
|
||||
)
|
||||
{
|
||||
// make sure requires clause is not broken
|
||||
DLIB_ASSERT(B_.nr() == B_.nc() && is_col_vector(g_) && g_.size() == B_.nr(),
|
||||
"\t unsigned long solve_trust_region_subproblem_bounded()"
|
||||
<< "\n\t invalid arguments were given to this function"
|
||||
<< "\n\t B_.nr(): " << B_.nr()
|
||||
<< "\n\t B_.nc(): " << B_.nc()
|
||||
<< "\n\t is_col_vector(g_): " << is_col_vector(g_)
|
||||
<< "\n\t g_.size(): " << g_.size()
|
||||
);
|
||||
DLIB_ASSERT(radius_ > 0 && eps > 0 && max_iter > 0,
|
||||
"\t unsigned long solve_trust_region_subproblem_bounded()"
|
||||
<< "\n\t invalid arguments were given to this function"
|
||||
<< "\n\t radius_: " << radius_
|
||||
<< "\n\t eps: " << eps
|
||||
<< "\n\t max_iter: " << max_iter
|
||||
);
|
||||
DLIB_ASSERT(is_col_vector(lower_) && lower_.size() == g_.size());
|
||||
DLIB_ASSERT(is_col_vector(upper_) && upper_.size() == g_.size());
|
||||
DLIB_ASSERT(max(upper_-lower_) >= 0);
|
||||
// make sure the problem is feasible. That is, there should be a point inside the
|
||||
// lower and upper bounds that has a norm <= radius_
|
||||
DLIB_ASSERT(length(clamp(zeros_matrix(lower_),lower_,upper_)) <= radius_,
|
||||
"The lower and upper bounds are incompatible with the radius since there is no point within the bounds with a norm less than the radius.");
|
||||
|
||||
// We are going to solve this by greedily finding the most violated bound constraint,
|
||||
// locking that variable to its constrained value, removing it from the problem,
|
||||
// and then resolving. We do that until no more constraint violations are present.
|
||||
|
||||
solve_trust_region_subproblem(B_,g_,radius_,p_,eps,max_iter);
|
||||
|
||||
|
||||
// just stop here if all the bounds are satisfied.
|
||||
if (!impl::bounds_violated(p_, lower_, upper_))
|
||||
return;
|
||||
|
||||
matrix<double> B = matrix_cast<double>(B_);
|
||||
matrix<double,0,1> g = matrix_cast<double>(g_);
|
||||
double radius = radius_;
|
||||
matrix<double,0,1> p = matrix_cast<double>(p_);
|
||||
matrix<double,0,1> lower = matrix_cast<double>(lower_);
|
||||
matrix<double,0,1> upper = matrix_cast<double>(upper_);
|
||||
|
||||
// keep a table that tells us how to map any reduced QP back to the original QP
|
||||
std::vector<long> idxs(g.size());
|
||||
for (size_t i = 0; i < idxs.size(); ++i)
|
||||
idxs[i] = i;
|
||||
|
||||
|
||||
// while we haven't found a p that satisfies the bounds constraints
|
||||
while(impl::bounds_violated(p, lower, upper) )
|
||||
{
|
||||
// Find the most violated variable and fix its value to a constant (the bound
|
||||
// value).
|
||||
long most_violated_idx = 0;
|
||||
double max_violation = 0;
|
||||
double bounded_value = 0;
|
||||
for (long i = 0; i < lower.size(); ++i)
|
||||
{
|
||||
if (!(lower(i) <= p(i) && p(i) <= upper(i)))
|
||||
{
|
||||
if (lower(i)-p(i) > max_violation)
|
||||
{
|
||||
max_violation = lower(i)-p(i);
|
||||
most_violated_idx = i;
|
||||
bounded_value = lower(i);
|
||||
}
|
||||
else if (p(i)-upper(i) > max_violation)
|
||||
{
|
||||
max_violation = p(i)-upper(i);
|
||||
most_violated_idx = i;
|
||||
bounded_value = upper(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// assign this variable to its final value.
|
||||
p_(idxs[most_violated_idx]) = bounded_value;
|
||||
|
||||
|
||||
// now reduce the QP by removing the variable p_(idxs[most_violated_idx]).
|
||||
idxs.erase(idxs.begin()+most_violated_idx);
|
||||
// we are out of variables to remove since everything is at bounds.
|
||||
if (idxs.size() == 0)
|
||||
break;
|
||||
|
||||
lower = remove_row(lower,most_violated_idx);
|
||||
upper = remove_row(upper,most_violated_idx);
|
||||
g += colm(B,most_violated_idx)*bounded_value;
|
||||
g = remove_row(g,most_violated_idx);
|
||||
p = remove_row(p,most_violated_idx);
|
||||
B = removerc(B,most_violated_idx, most_violated_idx);
|
||||
|
||||
// Removing a variable changes the radius, so we have to subtract the bounded
|
||||
// value from the radius so as to not change the effective radius for the whole
|
||||
// problem.
|
||||
double squared_radius = radius*radius - bounded_value*bounded_value;
|
||||
if (squared_radius <= 0)
|
||||
{
|
||||
p = 0;
|
||||
break;
|
||||
}
|
||||
radius = std::sqrt(squared_radius);
|
||||
|
||||
|
||||
solve_trust_region_subproblem(B,g,radius,p,eps,max_iter);
|
||||
}
|
||||
|
||||
// assign the non-bound-constrained variables to their final values
|
||||
for (size_t i = 0; i < idxs.size(); ++i)
|
||||
p_(idxs[i]) = p(i);
|
||||
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
template <
|
||||
|
@ -47,6 +47,57 @@ namespace dlib
|
||||
the radius constraint is active and std::abs(length(#p)-radius)/radius <= eps.
|
||||
!*/
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
template <
|
||||
typename EXP1,
|
||||
typename EXP2,
|
||||
typename T, long NR, long NC, typename MM, typename L,
|
||||
typename EXP3
|
||||
>
|
||||
void solve_trust_region_subproblem_bounded (
|
||||
const matrix_exp<EXP1>& B,
|
||||
const matrix_exp<EXP2>& g,
|
||||
const typename EXP1::type radius,
|
||||
matrix<T,NR,NC,MM,L>& p,
|
||||
double eps,
|
||||
unsigned long max_iter,
|
||||
const matrix_exp<EXP3>& lower,
|
||||
const matrix_exp<EXP3>& upper
|
||||
);
|
||||
/*!
|
||||
requires
|
||||
- B == trans(B)
|
||||
(i.e. B should be a symmetric matrix)
|
||||
- B.nr() == B.nc()
|
||||
- is_col_vector(g) == true
|
||||
- is_col_vector(lower) == true
|
||||
- is_col_vector(upper) == true
|
||||
- g.size() == B.nr()
|
||||
- lower.size() == B.nr()
|
||||
- upper.size() == B.nr()
|
||||
- p is capable of containing a column vector the size of g
|
||||
(i.e. p = g; should be a legal expression)
|
||||
- radius > 0
|
||||
- eps > 0
|
||||
- max_iter > 0
|
||||
- min(upper-lower) >= 0
|
||||
- length(clamp(zeros_matrix(lower),lower,upper)) <= radius
|
||||
(i.e. the lower and upper bounds can't exclude all points with the desired radius.)
|
||||
ensures
|
||||
- This function solves the following optimization problem:
|
||||
Minimize: f(p) == 0.5*trans(p)*B*p + trans(g)*p
|
||||
subject to the following constraint:
|
||||
- length(p) <= radius
|
||||
- lower(i) <= p(i) <= upper(i), for all i
|
||||
- Solves the problem to eps accuracy. We do this by greedily finding the most
|
||||
violated bound constraint, locking that variable to its constrained value, removing
|
||||
it from the problem, and then resolving. We do that until no more constraint
|
||||
violations are present. Each time we just call solve_trust_region_subproblem()
|
||||
to get the solution and pass eps and max_iter directly to these calls to
|
||||
solve_trust_region_subproblem().
|
||||
!*/
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
class function_model
|
||||
|
@ -1182,6 +1182,28 @@ namespace
|
||||
off = 1.0; DLIB_TEST(std::abs( poly_min_extrap(off*off, -2*off, (1-off)*(1-off)) - off) < 1e-13);
|
||||
}
|
||||
|
||||
void test_solve_trust_region_subproblem_bounded()
|
||||
{
|
||||
print_spinner();
|
||||
matrix<double> H(2,2);
|
||||
H = 1, 0,
|
||||
0, 1;
|
||||
matrix<double,0,1> g, lower, upper, p, true_p;
|
||||
g = {0, 0};
|
||||
|
||||
double radius = 0.5;
|
||||
lower = {0.5, 0};
|
||||
upper = {10, 10};
|
||||
|
||||
|
||||
solve_trust_region_subproblem_bounded(H,g, radius, p, 0.001, 500, lower, upper);
|
||||
true_p = { 0.5, 0};
|
||||
DLIB_TEST_MSG(length(p-true_p) < 1e-12, p);
|
||||
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
class optimization_tester : public tester
|
||||
{
|
||||
public:
|
||||
@ -1200,6 +1222,7 @@ namespace
|
||||
test_box_constrained_optimizers(lbfgs_search_strategy(5));
|
||||
test_poly_min_extract_2nd();
|
||||
optimization_test();
|
||||
test_solve_trust_region_subproblem_bounded();
|
||||
}
|
||||
} a;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user