simplified this object a little bit.

This commit is contained in:
Davis King 2011-09-08 22:01:31 -04:00
parent 02566cc9b5
commit 5e7d14f4ca
2 changed files with 19 additions and 30 deletions

View File

@ -58,8 +58,6 @@ namespace dlib
const image_type& img
);
bool has_image_statistics (
) const;
void copy_configuration (
const feature_extractor& item
@ -132,6 +130,8 @@ namespace dlib
private:
inline bool has_image_statistics (
) const;
feature_extractor fe;
typename feature_extractor::descriptor_type inv_stddev;
@ -431,11 +431,9 @@ namespace dlib
{
// make sure requires clause is not broken
DLIB_ASSERT(0 <= row && row < nr() &&
0 <= col && col < nc() &&
has_image_statistics() == true,
0 <= col && col < nc(),
"\t descriptor_type hashed_feature_image::operator(row,col)"
<< "\n\t Invalid inputs were given to this function"
<< "\n\t has_image_statistics(): " << has_image_statistics()
<< "\n\t row: " << row
<< "\n\t col: " << col
<< "\n\t nr(): " << nr()
@ -444,7 +442,11 @@ namespace dlib
);
hash_feats.resize(scales.size());
scaled_feats = pointwise_multiply(fe(row,col), inv_stddev);
if (has_image_statistics())
scaled_feats = pointwise_multiply(fe(row,col), inv_stddev);
else
scaled_feats = fe(row,col);
for (long i = 0; i < scales.size(); ++i)
{
quantized_feats = matrix_cast<int32>(scales(i)*scaled_feats);

View File

@ -24,7 +24,6 @@ namespace dlib
INITIAL VALUE
- size() == 0
- get_num_dimensions() == 1000
- has_image_statistics() == false
- get_scales() == logspace(-1,1,3)
WHAT THIS OBJECT REPRESENTS
@ -77,10 +76,10 @@ namespace dlib
ensures
- When a feature vector from BASE_FE is hashed, it is hashed into exactly
get_scales().size() hash bins. Each hash is computed as follows:
- first normalize the feature vector
- then multiply it by an element of get_scales()
- then convert the resulting vector to a vector of dlib::int32
- finally, hash the integer vector into a hash bin.
- First normalize the feature vector.
- Then multiply it by an element of get_scales().
- Then convert the resulting vector to a vector of dlib::int32.
- Finally, hash the integer vector into a hash bin.
- The size of the numbers in get_scales() determines how "big" the hash bins are.
A very small scale value would result in all input vectors being hashed into the
same bin, while larger scale values would result in only similar vectors
@ -97,22 +96,12 @@ namespace dlib
);
/*!
requires
- image_type == is an implementation of array2d/array2d_kernel_abstract.h
- pixel_traits<typename image_type::type>::has_alpha == false
- image_type == any type that can be supplied to feature_extractor::load()
ensures
- if (img is large enough to have at least two local features in it) then
- #has_image_statistics() == true
- This function will accumulate image statistics across multiple calls.
Therefore, it can be beneficial to pass in many images.
!*/
bool has_image_statistics (
) const;
/*!
ensures
- Part of the hashing step is to normalize the features produced by
BASE_FE. This function returns true if we have accumulated the necessary
information to perform this normalization and false otherwise.
- Part of the hashing step is to normalize the features produced by BASE_FE.
This function will accumulate image statistics used to perform this normalization.
Note that it will accumulate across multiple calls. Therefore, it can be
beneficial to pass in many images.
!*/
void copy_configuration (
@ -145,8 +134,7 @@ namespace dlib
);
/*!
requires
- image_type == is an implementation of array2d/array2d_kernel_abstract.h
- pixel_traits<typename image_type::type>::has_alpha == false
- image_type == any type that can be supplied to feature_extractor::load()
ensures
- performs BASE_FE.load(img)
i.e. does feature extraction. The features can be accessed using
@ -198,11 +186,10 @@ namespace dlib
) const;
/*!
requires
- has_image_statistics() == true
- 0 <= row < nr()
- 0 <= col < nc()
ensures
- hashes BASE_FE(row,col) and returns resulting indicator vector.
- hashes BASE_FE(row,col) and returns the resulting indicator vector.
- Returns a vector V such that:
- V.size() == get_scales().size()
- for all valid i: 0 <= V[i].first < get_num_dimensions()