mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
Added some more comments
This commit is contained in:
parent
034e0e1996
commit
5e550a261e
@ -121,7 +121,11 @@ int main(int argc, char** argv) try
|
||||
anet_type net;
|
||||
deserialize("resnet34_1000_imagenet_classifier.dnn") >> net >> labels;
|
||||
|
||||
|
||||
// Make a network with softmax as the final layer. We don't have to do this
|
||||
// if we just want to output the single best prediction, since the anet_type
|
||||
// already does this. But if we instead want to get the probability of each
|
||||
// class as output we need to replace the last layer of the network with a
|
||||
// softmax layer, which we do as follows:
|
||||
softmax<anet_type::subnet_type> snet;
|
||||
snet.subnet() = net.subnet();
|
||||
|
||||
@ -131,7 +135,7 @@ int main(int argc, char** argv) try
|
||||
dlib::rand rnd;
|
||||
image_window win;
|
||||
|
||||
// read images from the command prompt and print the top 5 best labels for each.
|
||||
// Read images from the command prompt and print the top 5 best labels for each.
|
||||
for (int i = 1; i < argc; ++i)
|
||||
{
|
||||
load_image(img, argv[i]);
|
||||
@ -143,6 +147,7 @@ int main(int argc, char** argv) try
|
||||
matrix<float,1,1000> p = sum_rows(mat(snet(images.begin(), images.end())))/num_crops;
|
||||
|
||||
win.set_image(img);
|
||||
// Print the 5 most probable labels
|
||||
for (int k = 0; k < 5; ++k)
|
||||
{
|
||||
unsigned long predicted_label = index_of_max(p);
|
||||
|
Loading…
Reference in New Issue
Block a user