mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
updated docs
This commit is contained in:
parent
8685719045
commit
57a0cda903
@ -135,6 +135,10 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
||||
<item>vector_normalizer_frobmetric</item>
|
||||
<item>compute_lda_transform</item>
|
||||
</section>
|
||||
<section>
|
||||
<name>Reinforcement Learning</name>
|
||||
<item>lspi</item>
|
||||
</section>
|
||||
<section>
|
||||
<name>Feature Selection</name>
|
||||
<item>rank_features</item>
|
||||
@ -218,6 +222,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
||||
<item>assignment_function</item>
|
||||
<item>track_association_function</item>
|
||||
<item>graph_labeler</item>
|
||||
<item>policy</item>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
@ -252,6 +257,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
||||
<item>is_ranking_problem</item>
|
||||
<item>count_ranking_inversions</item>
|
||||
<item>learn_platt_scaling</item>
|
||||
<item>process_sample</item>
|
||||
|
||||
|
||||
|
||||
@ -1635,6 +1641,51 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
|
||||
</examples>
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>lspi</name>
|
||||
<file>dlib/control.h</file>
|
||||
<spec_file link="true">dlib/control/lspi_abstract.h</spec_file>
|
||||
<description>
|
||||
This object is an implementation of the reinforcement learning algorithm
|
||||
described in the following paper:
|
||||
<blockquote>
|
||||
Lagoudakis, Michail G., and Ronald Parr. "Least-squares policy
|
||||
iteration." The Journal of Machine Learning Research 4 (2003):
|
||||
1107-1149.
|
||||
</blockquote>
|
||||
|
||||
</description>
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>policy</name>
|
||||
<file>dlib/control.h</file>
|
||||
<spec_file link="true">dlib/control/approximate_linear_models_abstract.h</spec_file>
|
||||
<description>
|
||||
This is a policy (i.e. a control law) based on a linear function approximator.
|
||||
You can use a tool like <a href="#lspi">lspi</a> to learn the parameters
|
||||
of a policy.
|
||||
</description>
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
<name>process_sample</name>
|
||||
<file>dlib/control.h</file>
|
||||
<spec_file link="true">dlib/control/approximate_linear_models_abstract.h</spec_file>
|
||||
<description>
|
||||
This object holds a training sample for a reinforcement learning algorithm
|
||||
(e.g. <a href="#lspi">lspi</a>).
|
||||
In particular, it contains a state, action, reward, next state sample from
|
||||
some process.
|
||||
</description>
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
|
@ -267,6 +267,9 @@
|
||||
<term file="algorithms.html" name="random_subset_selector" include="dlib/statistics.h"/>
|
||||
<term file="algorithms.html" name="randomly_subsample" include="dlib/statistics.h"/>
|
||||
|
||||
<term file="ml.html" name="lspi" include="dlib/control.h"/>
|
||||
<term file="ml.html" name="policy" include="dlib/control.h"/>
|
||||
<term file="ml.html" name="process_sample" include="dlib/control.h"/>
|
||||
<term file="ml.html" name="select_all_distinct_labels" include="dlib/svm.h"/>
|
||||
<term file="dlib/svm/multiclass_tools_abstract.h.html" name="find_missing_pairs" include="dlib/svm.h"/>
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user