Fix Barlow Twins loss gradient (#2518)

* Fix Barlow Twins loss gradient

* Update reference test accuracy after fix

* Round the empirical cross-correlation matrix

Just a tiny modification that allows the values to actually reach 255 (perfect white).
This commit is contained in:
Adrià Arrufat 2022-02-21 22:33:21 +09:00 committed by GitHub
parent 39852f092c
commit 50b78da53a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 8 additions and 6 deletions

View File

@ -4066,8 +4066,8 @@ namespace dlib
resizable_tensor off_mask(ones_matrix<float>(sample_size, sample_size) - identity_matrix<float>(sample_size));
resizable_tensor off_diag(sample_size, sample_size);
tt::multiply(false, off_diag, eccm, off_mask);
tt::gemm(1, grad_input_a, lambda, zb_norm, false, off_diag, false);
tt::gemm(1, grad_input_b, lambda, za_norm, false, off_diag, false);
tt::gemm(1, grad_input_a, 2 * lambda, zb_norm, false, off_diag, false);
tt::gemm(1, grad_input_b, 2 * lambda, za_norm, false, off_diag, false);
// Compute the batch norm gradients, g and b grads are not used
resizable_tensor g_grad, b_grad;

View File

@ -277,7 +277,7 @@ try
// visualize it.
tt::gemm(0, eccm, 1, za_norm, true, zb_norm, false);
eccm /= batch_size;
win.set_image(abs(mat(eccm)) * 255);
win.set_image(round(abs(mat(eccm)) * 255));
win.set_title("Barlow Twins step#: " + to_string(trainer.get_train_one_step_calls()));
}
}
@ -304,12 +304,14 @@ try
auto cross_validation_score = [&](const double c)
{
svm_multiclass_linear_trainer<linear_kernel<matrix<float, 0, 1>>, unsigned long> trainer;
trainer.set_num_threads(std::thread::hardware_concurrency());
trainer.set_c(c);
trainer.set_epsilon(0.01);
trainer.set_max_iterations(100);
trainer.set_num_threads(std::thread::hardware_concurrency());
cout << "C: " << c << endl;
const auto cm = cross_validate_multiclass_trainer(trainer, features, training_labels, 3);
const double accuracy = sum(diag(cm)) / sum(cm);
cout << "cross validation accuracy: " << accuracy << endl;;
cout << "cross validation accuracy: " << accuracy << endl;
cout << "confusion matrix:\n " << cm << endl;
return accuracy;
};
@ -345,7 +347,7 @@ try
cout << " error rate: " << num_wrong / static_cast<double>(num_right + num_wrong) << endl;
};
// We should get a training accuracy of around 93% and a testing accuracy of around 88%.
// We should get a training accuracy of around 93% and a testing accuracy of around 89%.
cout << "\ntraining accuracy" << endl;
compute_accuracy(features, training_labels);
cout << "\ntesting accuracy" << endl;