mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
updated docs
This commit is contained in:
parent
1f5e406617
commit
48d64957b9
@ -37,6 +37,7 @@
|
||||
<item>find_max_bobyqa</item>
|
||||
<item>find_max_trust_region</item>
|
||||
<item>find_min_trust_region</item>
|
||||
<item>find_optimal_parameters</item>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
@ -58,6 +59,7 @@
|
||||
<item>find_max_factor_graph_potts</item>
|
||||
<item>find_max_parse_cky</item>
|
||||
<item>min_cut</item>
|
||||
<item>elastic_net</item>
|
||||
</section>
|
||||
|
||||
<section>
|
||||
@ -877,6 +879,65 @@ Or it can use the elastic net regularizer:
|
||||
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component cpp11="true">
|
||||
<name>find_optimal_parameters</name>
|
||||
<file>dlib/optimization/find_optimal_parameters.h</file>
|
||||
<spec_file link="true">dlib/optimization/find_optimal_parameters_abstract.h</spec_file>
|
||||
<description>
|
||||
Performs a constrained minimization of a function and doesn't require derivatives from the user.
|
||||
This function is similar to <a href="#find_min_bobyqa">find_min_bobyqa</a> and
|
||||
<a href="#find_min_single_variable">find_min_single_variable</a> except that it
|
||||
allows any number of variables and never throws exceptions when the max iteration
|
||||
limit is reached (even if it didn't converge).
|
||||
</description>
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component cpp11="true">
|
||||
<name>elastic_net</name>
|
||||
<file>dlib/optimization/elastic_net.h</file>
|
||||
<spec_file link="true">dlib/optimization/elastic_net_abstract.h</spec_file>
|
||||
<description>
|
||||
This object is a tool for solving the following optimization problem:
|
||||
|
||||
<pre>
|
||||
min_w: length_squared(X*w - Y) + ridge_lambda*length_squared(w)
|
||||
such that: sum(abs(w)) <= lasso_budget
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
That is, it solves the elastic net optimization problem. This object also
|
||||
has the special property that you can quickly obtain different solutions
|
||||
for different settings of ridge_lambda, lasso_budget, and target Y values.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
This is because a large amount of work is precomputed in the constructor.
|
||||
The solver will also remember the previous solution and will use that to
|
||||
warm start subsequent invocations. Therefore, you can efficiently get
|
||||
solutions for a wide range of regularization parameters.
|
||||
</p>
|
||||
|
||||
|
||||
The particular algorithm used to solve it is described in the paper:
|
||||
<blockquote>
|
||||
Zhou, Quan, et al. "A reduction of the elastic net to support vector
|
||||
machines with an application to gpu computing." arXiv preprint
|
||||
arXiv:1409.1976 (2014). APA
|
||||
</blockquote>
|
||||
|
||||
And for the SVM solver sub-component we use the algorithm from:
|
||||
<blockquote>
|
||||
Hsieh, Cho-Jui, et al. "A dual coordinate descent method for large-scale
|
||||
linear SVM." Proceedings of the 25th international conference on Machine
|
||||
learning. ACM, 2008.
|
||||
</blockquote>
|
||||
</description>
|
||||
</component>
|
||||
|
||||
<!-- ************************************************************************* -->
|
||||
|
||||
<component>
|
||||
|
@ -12,6 +12,8 @@
|
||||
|
||||
<current>
|
||||
New Features:
|
||||
- Added find_optimal_parameters()
|
||||
- Added elastic_net
|
||||
- Added random_color_transform and disturb_colors().
|
||||
- Added a constructor for seeding rand with a time_t.
|
||||
- Added apply_random_color_offset()
|
||||
@ -46,15 +48,20 @@ New Features:
|
||||
|
||||
Non-Backwards Compatible Changes:
|
||||
- Everything in dlib/matlab/call_matlab.h is now in the dlib namespace.
|
||||
- DLIB_TEST() and DLIB_TEST_MSG() macros now require you to terminate them with ;
|
||||
|
||||
Bug fixes:
|
||||
- Fixed bug in 10 argument version of call_matlab() and also cleaned up a few
|
||||
minor things.
|
||||
- setup.py and cmake scripts work in a few more contexts.
|
||||
- Compiler errors in visual studio 2015
|
||||
- Fixed a bug in gaussian_blur() that caused messed up outputs when big sigma values were used on some pixel types.
|
||||
- Fixed minor bugs in join_rows() and join_cols(). They didn't work when one of the matrices was empty.
|
||||
|
||||
|
||||
Other:
|
||||
- Made cmake scripts uniformly require cmake version 2.8.4.
|
||||
- faster fHOG feature extraction / face detection
|
||||
- C++11
|
||||
- CMake scripts now enable C++11 by default
|
||||
- Gave array2d and matrix move constructors and move assignment operators.
|
||||
|
@ -261,6 +261,8 @@
|
||||
<term file="optimization.html" name="find_min_single_variable" include="dlib/optimization.h"/>
|
||||
<term file="optimization.html" name="find_min_using_approximate_derivatives" include="dlib/optimization.h"/>
|
||||
<term file="optimization.html" name="find_min_bobyqa" include="dlib/optimization.h"/>
|
||||
<term file="optimization.html" name="find_optimal_parameters" include="dlib/optimization/find_optimal_parameters.h"/>
|
||||
<term file="optimization.html" name="elastic_net" include="dlib/optimization/elastic_net.h"/>
|
||||
<term file="optimization.html" name="solve_qp_box_constrained" include="dlib/optimization.h"/>
|
||||
<term file="optimization.html" name="solve_qp_using_smo" include="dlib/optimization.h"/>
|
||||
<term file="optimization.html" name="solve_qp2_using_smo" include="dlib/optimization.h"/>
|
||||
|
Loading…
Reference in New Issue
Block a user