mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
Renamed the lambda variable since it clashes with a python keyword.
This commit is contained in:
parent
a16515eac7
commit
2e2a14879b
@ -198,8 +198,8 @@ void bind_shape_predictors()
|
||||
.add_property("feature_pool_size", &type::feature_pool_size,
|
||||
&type::feature_pool_size,
|
||||
"Number of pixels used to generate features for the random trees.")
|
||||
.add_property("lambda", &type::lambda,
|
||||
&type::lambda,
|
||||
.add_property("lambda_param", &type::lambda_param,
|
||||
&type::lambda_param,
|
||||
"Controls how tight the feature sampling should be. Lower values enforce closer features.")
|
||||
.add_property("num_test_splits", &type::num_test_splits,
|
||||
&type::num_test_splits,
|
||||
@ -238,7 +238,7 @@ ensures \n\
|
||||
def("train_shape_predictor", train_shape_predictor_on_images_py,
|
||||
(arg("images"), arg("object_detections"), arg("options")),
|
||||
"requires \n\
|
||||
- options.lambda > 0 \n\
|
||||
- options.lambda_param > 0 \n\
|
||||
- 0 < options.nu <= 1 \n\
|
||||
- options.feature_pool_region_padding >= 0 \n\
|
||||
- len(images) == len(object_detections) \n\
|
||||
@ -253,7 +253,7 @@ ensures \n\
|
||||
def("train_shape_predictor", train_shape_predictor,
|
||||
(arg("dataset_filename"), arg("predictor_output_filename"), arg("options")),
|
||||
"requires \n\
|
||||
- options.lambda > 0 \n\
|
||||
- options.lambda_param > 0 \n\
|
||||
- 0 < options.nu <= 1 \n\
|
||||
- options.feature_pool_region_padding >= 0 \n\
|
||||
ensures \n\
|
||||
|
@ -26,7 +26,7 @@ namespace dlib
|
||||
nu = 0.1;
|
||||
oversampling_amount = 20;
|
||||
feature_pool_size = 400;
|
||||
lambda = 0.1;
|
||||
lambda_param = 0.1;
|
||||
num_test_splits = 20;
|
||||
feature_pool_region_padding = 0;
|
||||
random_seed = "";
|
||||
@ -39,7 +39,7 @@ namespace dlib
|
||||
double nu;
|
||||
unsigned long oversampling_amount;
|
||||
unsigned long feature_pool_size;
|
||||
double lambda;
|
||||
double lambda_param;
|
||||
unsigned long num_test_splits;
|
||||
double feature_pool_region_padding;
|
||||
std::string random_seed;
|
||||
@ -71,8 +71,8 @@ namespace dlib
|
||||
const shape_predictor_training_options& options
|
||||
)
|
||||
{
|
||||
if (options.lambda <= 0)
|
||||
throw error("Invalid lambda value given to train_shape_predictor(), lambda must be > 0.");
|
||||
if (options.lambda_param <= 0)
|
||||
throw error("Invalid lambda_param value given to train_shape_predictor(), lambda_param must be > 0.");
|
||||
if (!(0 < options.nu && options.nu <= 1))
|
||||
throw error("Invalid nu value given to train_shape_predictor(). It is required that 0 < nu <= 1.");
|
||||
if (options.feature_pool_region_padding < 0)
|
||||
@ -94,7 +94,7 @@ namespace dlib
|
||||
trainer.set_oversampling_amount(options.oversampling_amount);
|
||||
trainer.set_feature_pool_size(options.feature_pool_size);
|
||||
trainer.set_feature_pool_region_padding(options.feature_pool_region_padding);
|
||||
trainer.set_lambda(options.lambda);
|
||||
trainer.set_lambda(options.lambda_param);
|
||||
trainer.set_num_test_splits(options.num_test_splits);
|
||||
|
||||
if (options.be_verbose)
|
||||
@ -107,7 +107,7 @@ namespace dlib
|
||||
std::cout << "Training with oversampling amount: " << options.oversampling_amount << std::endl;
|
||||
std::cout << "Training with feature pool size: " << options.feature_pool_size << std::endl;
|
||||
std::cout << "Training with feature pool region padding: " << options.feature_pool_region_padding << std::endl;
|
||||
std::cout << "Training with lambda: " << options.lambda << std::endl;
|
||||
std::cout << "Training with lambda_param: " << options.lambda_param << std::endl;
|
||||
std::cout << "Training with " << options.num_test_splits << " split tests."<< std::endl;
|
||||
trainer.be_verbose();
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user