mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
Grouping layer added
This commit is contained in:
parent
617ffba652
commit
28c4a48281
493
dlib/dnn/core.h
493
dlib/dnn/core.h
@ -3159,6 +3159,499 @@ namespace dlib
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
namespace impl
|
||||
{
|
||||
template <typename T>
|
||||
struct group_helper;
|
||||
template<typename... R>
|
||||
struct group_count_helper;
|
||||
}
|
||||
|
||||
|
||||
// --------------------------------------------------------------------------------------
|
||||
// this class is used to reference group layer input
|
||||
class group_input
|
||||
{
|
||||
public:
|
||||
typedef tensor input_type;
|
||||
const static unsigned int sample_expansion_factor = 1;
|
||||
friend void serialize(const group_input& item, std::ostream& out)
|
||||
{
|
||||
serialize("group_input", out);
|
||||
}
|
||||
|
||||
friend void deserialize(group_input& item, std::istream& in)
|
||||
{
|
||||
std::string version;
|
||||
deserialize(version, in);
|
||||
if (version != "group_input")
|
||||
throw serialization_error("Unexpected version found while deserializing dlib::group_input.");
|
||||
}
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& out, const group_input& item)
|
||||
{
|
||||
out << "group_input";
|
||||
return out;
|
||||
}
|
||||
};
|
||||
// --------------------------------------------------------------------------------------
|
||||
|
||||
template <typename GRP, typename SUBNET>
|
||||
class depth_group;
|
||||
|
||||
|
||||
template <typename T, typename U>
|
||||
struct is_nonloss_layer_type<depth_group<T,U>> : std::true_type {};
|
||||
|
||||
template <typename GRP, typename SUBNET>
|
||||
class depth_group
|
||||
{
|
||||
public:
|
||||
typedef GRP grp_type;
|
||||
typedef SUBNET subnet_type;
|
||||
typedef typename subnet_type::input_type input_type;
|
||||
const static size_t group_size = std::tuple_size<grp_type>::value;
|
||||
const static size_t num_layers_in_group = impl::group_count_helper<GRP>::num_layers;
|
||||
const static size_t num_layers = subnet_type::num_layers + num_layers_in_group;
|
||||
const static size_t num_computational_layers_in_group = impl::group_count_helper<GRP>::num_computational_layers;
|
||||
const static size_t num_computational_layers = subnet_type::num_computational_layers + num_computational_layers_in_group;
|
||||
const static unsigned int sample_expansion_factor = subnet_type::sample_expansion_factor;
|
||||
|
||||
using group_helper = impl::group_helper<grp_type>;
|
||||
|
||||
depth_group(
|
||||
):
|
||||
subnetwork(new subnet_type()),
|
||||
grp(new grp_type()),
|
||||
gradient_input_is_stale(true),
|
||||
get_output_and_gradient_input_disabled(false)
|
||||
{
|
||||
}
|
||||
|
||||
depth_group(const depth_group& item)
|
||||
{
|
||||
grp.reset(new grp_type(*item.grp));
|
||||
subnetwork.reset(new subnet_type(*item.subnetwork));
|
||||
gradient_input_is_stale = item.gradient_input_is_stale;
|
||||
get_output_and_gradient_input_disabled = item.get_output_and_gradient_input_disabled;
|
||||
x_grad = item.x_grad;
|
||||
cached_output = item.cached_output;
|
||||
temp_tensor = item.temp_tensor;
|
||||
}
|
||||
depth_group& operator=(const depth_group& item) { depth_group(item).swap(*this); return *this;}
|
||||
depth_group(depth_group&& item) : depth_group() { swap(item); }
|
||||
depth_group& operator=(depth_group&& item) { swap(item); return *this; }
|
||||
|
||||
template <typename T, typename U, typename E>
|
||||
friend class add_layer;
|
||||
template <typename T, bool is_first, typename E>
|
||||
friend class dimpl::subnet_wrapper;
|
||||
template <unsigned long T, typename U, typename E>
|
||||
friend class add_tag_layer;
|
||||
template <template<typename> class T, typename U>
|
||||
friend class add_skip_layer;
|
||||
template <size_t N, template<typename> class L, typename S>
|
||||
friend class repeat;
|
||||
|
||||
// Allow copying networks from one to another as long as their corresponding
|
||||
// layers can be constructed from each other.
|
||||
template <typename T, typename U>
|
||||
depth_group(
|
||||
const depth_group<T,U>& item
|
||||
) :
|
||||
grp(new grp_type(item.detail())),
|
||||
subnetwork(new subnet_type(item.subnet())),
|
||||
gradient_input_is_stale(item.gradient_input_is_stale),
|
||||
get_output_and_gradient_input_disabled(item.get_output_and_gradient_input_disabled),
|
||||
x_grad(item.x_grad),
|
||||
cached_output(item.cached_output)
|
||||
{
|
||||
}
|
||||
|
||||
template <typename input_iterator>
|
||||
void to_tensor (
|
||||
input_iterator ibegin,
|
||||
input_iterator iend,
|
||||
resizable_tensor& data
|
||||
) const
|
||||
{
|
||||
subnetwork->to_tensor(ibegin,iend,data);
|
||||
}
|
||||
|
||||
template <typename input_iterator>
|
||||
const tensor& operator() (
|
||||
input_iterator ibegin,
|
||||
input_iterator iend
|
||||
)
|
||||
{
|
||||
to_tensor(ibegin,iend,temp_tensor);
|
||||
return forward(temp_tensor);
|
||||
}
|
||||
|
||||
|
||||
const tensor& operator() (const input_type& x)
|
||||
{
|
||||
return (*this)(&x, &x+1);
|
||||
}
|
||||
|
||||
|
||||
// forward for group: subnet->for_each_in_group->concat->cached_output
|
||||
const tensor& forward(const tensor& x)
|
||||
{
|
||||
|
||||
subnetwork->forward(x);
|
||||
long group_depth = 0;
|
||||
|
||||
group_helper::forward(subnetwork->get_output(), detail(), group_depth);
|
||||
|
||||
auto& out_0 = std::get<0>(detail()).get_output();
|
||||
cached_output.set_size(out_0.num_samples(), group_depth, out_0.nr(), out_0.nc());
|
||||
|
||||
group_helper::concat(cached_output, detail());
|
||||
|
||||
|
||||
gradient_input_is_stale = true;
|
||||
return private_get_output();
|
||||
}
|
||||
|
||||
private:
|
||||
bool this_layer_requires_forward_output(
|
||||
)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
tensor& private_get_output() const
|
||||
{
|
||||
return const_cast<resizable_tensor&>(cached_output);
|
||||
}
|
||||
tensor& private_get_gradient_input()
|
||||
{
|
||||
if (gradient_input_is_stale)
|
||||
{
|
||||
gradient_input_is_stale = false;
|
||||
x_grad.copy_size(private_get_output());
|
||||
x_grad = 0;
|
||||
}
|
||||
return x_grad;
|
||||
}
|
||||
void disable_output_and_gradient_getters (
|
||||
) { get_output_and_gradient_input_disabled = true; }
|
||||
public:
|
||||
const tensor& get_output() const
|
||||
{
|
||||
if (get_output_and_gradient_input_disabled)
|
||||
throw dlib::error("Accessing this layer's get_output() is disabled because an in-place layer has been stacked on top of it.");
|
||||
return private_get_output();
|
||||
}
|
||||
tensor& get_gradient_input()
|
||||
{
|
||||
if (get_output_and_gradient_input_disabled)
|
||||
throw dlib::error("Accessing this layer's get_gradient_input() is disabled because an in-place layer has been stacked on top of it.");
|
||||
return private_get_gradient_input();
|
||||
}
|
||||
|
||||
const tensor& get_final_data_gradient(
|
||||
) const { return subnetwork->get_final_data_gradient(); }
|
||||
|
||||
void back_propagate_error(const tensor& x)
|
||||
{
|
||||
back_propagate_error(x, private_get_gradient_input());
|
||||
}
|
||||
void back_propagate_error(const tensor& x, const tensor& gradient_input)
|
||||
{
|
||||
group_helper::backward(detail(), get_gradient_input(), subnetwork->get_output(), subnetwork->get_gradient_input());
|
||||
|
||||
subnetwork->back_propagate_error(x);
|
||||
|
||||
// zero out get_gradient_input()
|
||||
gradient_input_is_stale = true;
|
||||
}
|
||||
|
||||
template <typename solver_type>
|
||||
void update_parameters(sstack<solver_type> solvers, double step_size)
|
||||
{
|
||||
DLIB_CASSERT(solvers.size()>=num_computational_layers,"");
|
||||
group_helper::update_parameters(solvers, step_size, detail());
|
||||
solvers = solvers.pop(num_computational_layers_in_group);
|
||||
subnetwork->update_parameters(solvers, step_size);
|
||||
}
|
||||
|
||||
const subnet_type& subnet() const { return *subnetwork; }
|
||||
subnet_type& subnet() { return *subnetwork; }
|
||||
|
||||
const grp_type& detail() const { return *grp; }
|
||||
grp_type& detail() { return *grp; }
|
||||
|
||||
void clean()
|
||||
{
|
||||
x_grad.clear();
|
||||
cached_output.clear();
|
||||
temp_tensor.clear();
|
||||
gradient_input_is_stale = true;
|
||||
subnetwork->clean();
|
||||
}
|
||||
|
||||
friend void serialize(const depth_group& item, std::ostream& out)
|
||||
{
|
||||
int version = 2;
|
||||
serialize(version, out);
|
||||
serialize(*item.subnetwork, out);
|
||||
group_helper::serialize(*item.grp, out);
|
||||
serialize(item.gradient_input_is_stale, out);
|
||||
serialize(item.get_output_and_gradient_input_disabled, out);
|
||||
serialize(item.x_grad, out);
|
||||
serialize(item.cached_output, out);
|
||||
}
|
||||
|
||||
friend void deserialize(depth_group& item, std::istream& in)
|
||||
{
|
||||
int version = 0;
|
||||
deserialize(version, in);
|
||||
if (!(1 <= version && version <= 2))
|
||||
throw serialization_error("Unexpected version found while deserializing dlib::depth_group.");
|
||||
deserialize(*item.subnetwork, in);
|
||||
group_helper::deserialize(*item.grp, in);
|
||||
deserialize(item.gradient_input_is_stale, in);
|
||||
deserialize(item.get_output_and_gradient_input_disabled, in);
|
||||
deserialize(item.x_grad, in);
|
||||
deserialize(item.cached_output, in);
|
||||
}
|
||||
|
||||
friend std::ostream& operator<< (std::ostream& out, const depth_group& item)
|
||||
{
|
||||
item.print(out, 0);
|
||||
return out;
|
||||
}
|
||||
|
||||
void print (std::ostream& out, unsigned long idx=0) const
|
||||
{
|
||||
out << "layer<" << idx << ">\t";
|
||||
detail().print(out, idx);
|
||||
subnet().print(out, idx+1);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
|
||||
void swap(depth_group& item)
|
||||
{
|
||||
std::swap(subnetwork,item.subnetwork);
|
||||
std::swap(grp, item.grp);
|
||||
std::swap(gradient_input_is_stale, item.gradient_input_is_stale);
|
||||
std::swap(get_output_and_gradient_input_disabled, item.get_output_and_gradient_input_disabled);
|
||||
std::swap(x_grad, item.x_grad);
|
||||
std::swap(cached_output, item.cached_output);
|
||||
}
|
||||
|
||||
|
||||
std::unique_ptr<subnet_type> subnetwork;
|
||||
std::unique_ptr<grp_type> grp;
|
||||
|
||||
bool gradient_input_is_stale;
|
||||
bool get_output_and_gradient_input_disabled;
|
||||
|
||||
resizable_tensor x_grad;
|
||||
resizable_tensor cached_output;
|
||||
|
||||
// temp_tensor doesn't logically contribute to the state of this object.
|
||||
// It is here only to prevent it from being reallocated over and over.
|
||||
resizable_tensor temp_tensor;
|
||||
};
|
||||
|
||||
// define "grp" layer shorter name for usage when creating networks
|
||||
template <typename GRP, typename SUBNET>
|
||||
using grp = depth_group<GRP, SUBNET>;
|
||||
|
||||
namespace impl {
|
||||
template<
|
||||
unsigned int i,
|
||||
typename T, typename U
|
||||
>
|
||||
struct layer_helper<i, depth_group<T, U>,
|
||||
typename std::enable_if<(i != 0 && i >= depth_group<T, U>::num_layers_in_group)>::type> {
|
||||
const static size_t num_layers_in_group = depth_group<T, U>::num_layers_in_group;
|
||||
|
||||
using next_type = typename depth_group<T, U>::subnet_type;
|
||||
using type = typename layer_helper<i - num_layers_in_group, next_type>::type;
|
||||
|
||||
static type &layer(depth_group<T, U> &n) {
|
||||
return layer_helper<i - num_layers_in_group, next_type>::layer(n.subnet());
|
||||
}
|
||||
};
|
||||
|
||||
template<
|
||||
unsigned int i,
|
||||
typename T, typename U
|
||||
>
|
||||
struct layer_helper<i, depth_group<T, U>,
|
||||
typename std::enable_if<(i != 0 && i < depth_group<T, U>::num_layers_in_group)>::type> {
|
||||
const static size_t num_layers_in_group = depth_group<T, U>::num_layers_in_group;
|
||||
typedef typename depth_group<T, U>::grp_type grp_type;
|
||||
using type = typename layer_helper<i, grp_type>::type;
|
||||
|
||||
static type &layer(depth_group<T, U> &n) {
|
||||
return layer_helper<i, grp_type>::layer(n.detail());
|
||||
}
|
||||
};
|
||||
|
||||
template <unsigned int pos, unsigned int i, typename... T>
|
||||
struct group_pos_search{
|
||||
const static unsigned int count = sizeof...(T);
|
||||
const static unsigned int pos_from_begin = count - pos - 1;
|
||||
using tuple_elem_type = typename std::tuple_element<pos_from_begin, std::tuple<T...>>::type;
|
||||
static const unsigned int num_layers = tuple_elem_type::num_layers;
|
||||
|
||||
static const unsigned int layer_index = i >= num_layers ? group_pos_search<pos - 1, i - num_layers, T...>::layer_index : i;
|
||||
static const unsigned int tuple_index = i >= num_layers ? group_pos_search<pos - 1, i - num_layers, T...>::tuple_index + 1 : pos;
|
||||
};
|
||||
template <unsigned int i, typename... T>
|
||||
struct group_pos_search<0, i, T...>{
|
||||
static const unsigned int layer_index = i;
|
||||
static const unsigned int tuple_index = 0;
|
||||
};
|
||||
|
||||
|
||||
template<
|
||||
unsigned int i,
|
||||
typename... R
|
||||
>
|
||||
struct layer_helper<i, std::tuple<R...>, typename std::enable_if<true>::type>{
|
||||
const static unsigned tuple_size = sizeof...(R);
|
||||
|
||||
static const unsigned int layer_index = group_pos_search<tuple_size - 1, i, R...>::layer_index;
|
||||
static const unsigned int tuple_index = group_pos_search<tuple_size - 1, i, R...>::tuple_index;
|
||||
|
||||
using next_type = typename std::tuple_element<tuple_index, std::tuple<R...>>::type;//typename std::remove_reference<decltype(makeT().subnet())>::type;
|
||||
using type = typename layer_helper<layer_index,next_type>::type;
|
||||
|
||||
static type &layer(std::tuple<R...> &n) {
|
||||
return layer_helper<layer_index, next_type>::layer(std::get<tuple_index>(n));
|
||||
}
|
||||
};
|
||||
|
||||
// helper classes for layer group processing
|
||||
template <size_t idx, typename... T>
|
||||
struct group_helper_impl{
|
||||
static void serialize_impl(const std::tuple<T...>& data, std::ostream& out){
|
||||
group_helper_impl<idx - 1, T...>::serialize_impl(data, out);
|
||||
serialize(std::get<idx>(data), out);
|
||||
}
|
||||
static void deserialize_impl(std::tuple<T...>& data, std::istream& in){
|
||||
group_helper_impl<idx - 1, T...>::deserialize_impl(data, in);
|
||||
deserialize(std::get<idx>(data), in);
|
||||
}
|
||||
static void forward(const tensor& x, std::tuple<T...>& grp, long& group_depth){
|
||||
group_helper_impl<idx - 1, T...>::forward(x, grp, group_depth);
|
||||
auto& r = std::get<idx>(grp).forward(x);
|
||||
group_depth += r.k();
|
||||
}
|
||||
static size_t concat(resizable_tensor& cached_output, std::tuple<T...>& grp, size_t offset){
|
||||
offset += group_helper_impl<idx - 1, T...>::concat(cached_output, grp, offset);
|
||||
auto& output = std::get<idx>(grp).get_output();
|
||||
tt::concat_depth(cached_output, offset, output);
|
||||
return offset + output.nc() * output.nr() * output.k();
|
||||
}
|
||||
template<typename solver_type>
|
||||
static sstack<solver_type> update_parameters(sstack<solver_type> solvers, double step_size, std::tuple<T...>& grp){
|
||||
sstack<solver_type> sub_solvers = group_helper_impl<idx - 1, T...>::update_parameters(solvers, step_size, grp);
|
||||
std::get<idx>(grp).update_parameters(sub_solvers, step_size);
|
||||
using tuple_elem_type = typename std::tuple_element<idx, std::tuple<T...>>::type;
|
||||
return sub_solvers.pop(tuple_elem_type::num_computational_layers);
|
||||
}
|
||||
static size_t backward(std::tuple<T...>& grp, const tensor& group_gradient_in,
|
||||
const tensor& subnet_out, tensor& group_gradient_out, size_t offset)
|
||||
{
|
||||
offset += group_helper_impl<idx - 1, T...>::backward(grp, group_gradient_in, subnet_out, group_gradient_out, offset);
|
||||
|
||||
auto& subnet = std::get<idx>(grp);
|
||||
auto& gr_input = subnet.get_gradient_input();
|
||||
tt::split_depth(gr_input, offset, group_gradient_in);
|
||||
|
||||
subnet.back_propagate_error(subnet_out);
|
||||
|
||||
tt::add(group_gradient_out, group_gradient_out, subnet.get_final_data_gradient());
|
||||
return offset + gr_input.nc() * gr_input.nr() * gr_input.k();
|
||||
}
|
||||
};
|
||||
template <typename... T>
|
||||
struct group_helper_impl<0, T...>{
|
||||
static void serialize_impl(const std::tuple<T...>& data, std::ostream& out){
|
||||
serialize(std::get<0>(data), out);
|
||||
}
|
||||
static void deserialize_impl(std::tuple<T...>& data, std::istream& in){
|
||||
deserialize(std::get<0>(data), in);
|
||||
}
|
||||
static void forward(const tensor& x, std::tuple<T...>& grp, long& group_depth){
|
||||
auto& r = std::get<0>(grp).forward(x);
|
||||
group_depth += r.k();
|
||||
}
|
||||
static size_t concat(resizable_tensor& cached_output, std::tuple<T...>& grp, size_t offset){
|
||||
auto& output = std::get<0>(grp).get_output();
|
||||
tt::concat_depth(cached_output, offset, output);
|
||||
return offset + output.nc() * output.nr() * output.k();
|
||||
}
|
||||
template<typename solver_type>
|
||||
static sstack<solver_type> update_parameters(sstack<solver_type> solvers, double step_size, std::tuple<T...>& grp){
|
||||
std::get<0>(grp).update_parameters(solvers, step_size);
|
||||
using tuple_elem_type = typename std::tuple_element<0, std::tuple<T...>>::type;
|
||||
return solvers.pop(tuple_elem_type::num_computational_layers);
|
||||
}
|
||||
static size_t backward(std::tuple<T...>& grp, const tensor& group_gradient_in,
|
||||
const tensor& subnet_out, tensor& group_gradient_out, size_t offset)
|
||||
{
|
||||
auto& item = std::get<0>(grp);
|
||||
auto& gr_input = item.get_gradient_input();
|
||||
tt::split_depth(gr_input, offset, group_gradient_in);
|
||||
item.back_propagate_error(subnet_out);
|
||||
|
||||
tt::add(group_gradient_out, group_gradient_out, item.get_final_data_gradient());
|
||||
return offset + gr_input.nc() * gr_input.nr() * gr_input.k();
|
||||
}
|
||||
};
|
||||
template <typename... T>
|
||||
struct group_helper<std::tuple<T...>>{
|
||||
static void serialize(const std::tuple<T...> & data, std::ostream& out){
|
||||
group_helper_impl<std::tuple_size<std::tuple<T...>>::value - 1, T...>::serialize_impl(data, out);
|
||||
}
|
||||
static void deserialize(std::tuple<T...>& data, std::istream& in){
|
||||
group_helper_impl<std::tuple_size<std::tuple<T...>>::value - 1, T...>::deserialize_impl(data, in);
|
||||
}
|
||||
static void forward(const tensor& x, std::tuple<T...>& grp, long& group_depth){
|
||||
group_helper_impl<std::tuple_size<std::tuple<T...>>::value - 1, T...>::forward(x, grp, group_depth);
|
||||
}
|
||||
static void concat(resizable_tensor& out, std::tuple<T...>& grp){
|
||||
group_helper_impl<std::tuple_size<std::tuple<T...>>::value - 1, T...>::concat(out, grp, 0);
|
||||
}
|
||||
template<typename solver_type>
|
||||
static void update_parameters(sstack<solver_type> solvers, double step_size, std::tuple<T...>& grp){
|
||||
group_helper_impl<std::tuple_size<std::tuple<T...>>::value - 1, T...>::update_parameters(solvers, step_size, grp);
|
||||
}
|
||||
static void backward(std::tuple<T...>& grp, const tensor& group_gradient_in, const tensor& subnet_out, tensor& group_gradient_out)
|
||||
{
|
||||
group_helper_impl<std::tuple_size<std::tuple<T...>>::value - 1, T...>::backward(grp, group_gradient_in, subnet_out, group_gradient_out, 0);
|
||||
}
|
||||
};
|
||||
|
||||
// helper classes to understand the count of group items layers
|
||||
template<typename T>
|
||||
struct group_count_helper<T>{
|
||||
const static size_t num_layers = T::num_layers;
|
||||
const static size_t num_computational_layers = T::num_computational_layers;
|
||||
};
|
||||
|
||||
template<typename T, typename... R>
|
||||
struct group_count_helper<T, R...>{
|
||||
const static size_t num_layers = group_count_helper<T>::num_layers + group_count_helper<R...>::num_layers;
|
||||
const static size_t num_computational_layers = group_count_helper<T>::num_computational_layers + group_count_helper<R...>::num_computational_layers;
|
||||
};
|
||||
template<typename... R>
|
||||
struct group_count_helper<std::tuple<R...>>{
|
||||
const static size_t num_layers = group_count_helper<R...>::num_layers;
|
||||
const static size_t num_computational_layers = group_count_helper<R...>::num_computational_layers;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif // DLIB_DNn_CORE_H_
|
||||
|
@ -634,6 +634,66 @@ namespace dlib { namespace tt
|
||||
#endif
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
// ------------------------------------------------------------------------------------
|
||||
|
||||
void concat_depth(tensor& dest, size_t sample_offset, const tensor& src)
|
||||
{
|
||||
const size_t dest_sample_size = static_cast<size_t>(dest.nc() * dest.nr() * dest.k());
|
||||
const size_t src_sample_size = static_cast<size_t>(src.nc() * src.nr() * src.k());
|
||||
|
||||
DLIB_CASSERT(dest.num_samples() == src.num_samples() &&
|
||||
dest.nc() == src.nc() && dest.nr() == src.nr(), "All sources should fit into dest tensor size");
|
||||
DLIB_CASSERT(dest_sample_size >= src_sample_size + sample_offset, "Not enough space in dest tensor");
|
||||
|
||||
#ifdef DLIB_USE_CUDA
|
||||
float* dest_p = dest.device_write_only() + sample_offset;
|
||||
const float* src_p = src.device();
|
||||
#else
|
||||
float* dest_p = dest.host_write_only() + sample_offset;
|
||||
const float* src_p = src.host();
|
||||
#endif
|
||||
|
||||
for (unsigned long i = 0; i < src.num_samples(); ++i)
|
||||
{
|
||||
#ifdef DLIB_USE_CUDA
|
||||
CHECK_CUDA(cudaMemcpy(dest_p, src_p, src_sample_size * sizeof(float), cudaMemcpyDeviceToDevice));
|
||||
#else
|
||||
::memcpy(dest_p, src_p, src_sample_size * sizeof(float));
|
||||
#endif
|
||||
dest_p += dest_sample_size;
|
||||
src_p += src_sample_size;
|
||||
}
|
||||
}
|
||||
|
||||
void split_depth(tensor& dest, size_t sample_offset, const tensor& src)
|
||||
{
|
||||
const size_t dest_sample_size = static_cast<size_t>(dest.nc() * dest.nr() * dest.k());
|
||||
const size_t src_sample_size = static_cast<size_t>(src.nc() * src.nr() * src.k());
|
||||
|
||||
DLIB_CASSERT(dest.num_samples() == src.num_samples() &&
|
||||
dest.nc() == src.nc() && dest.nr() == src.nr(), "All sources should fit into dest tensor size");
|
||||
DLIB_CASSERT(dest_sample_size <= src_sample_size - sample_offset, "Not enough space in dest tensor");
|
||||
|
||||
#ifdef DLIB_USE_CUDA
|
||||
float* dest_p = dest.device_write_only();
|
||||
const float* src_p = src.device() + sample_offset;
|
||||
#else
|
||||
float* dest_p = dest.host_write_only();
|
||||
const float* src_p = src.host() + sample_offset;
|
||||
#endif
|
||||
|
||||
for (unsigned long i = 0; i < src.num_samples(); ++i)
|
||||
{
|
||||
#ifdef DLIB_USE_CUDA
|
||||
CHECK_CUDA(cudaMemcpy(dest_p, src_p, dest_sample_size * sizeof(float), cudaMemcpyDeviceToDevice));
|
||||
#else
|
||||
::memcpy(dest_p, src_p, dest_sample_size * sizeof(float));
|
||||
#endif
|
||||
dest_p += dest_sample_size;
|
||||
src_p += src_sample_size;
|
||||
}
|
||||
}
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
}}
|
||||
|
@ -1171,6 +1171,43 @@ namespace dlib { namespace tt
|
||||
|
||||
resizable_tensor accum_buffer;
|
||||
};
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void concat_depth(
|
||||
tensor& dest,
|
||||
size_t sample_offset,
|
||||
const tensor& src
|
||||
);
|
||||
/*!
|
||||
requires
|
||||
- dest.nc() == src.nc()
|
||||
- dest.nr() == src.nr()
|
||||
- dest.num_samples() == src.num_samples()
|
||||
- dest.k() >= src.k() + sample_offset
|
||||
- is_same_object(dest,src) == false
|
||||
- sample_offset a count of elements, not bytes
|
||||
ensures
|
||||
- performs: dest[i, k + sample_offset, r, c] = src[i, k, r, c], where k in [0..src.k()]
|
||||
Copies content of each sample from src in to corresponding place of sample at dst
|
||||
!*/
|
||||
|
||||
void split_depth(
|
||||
tensor& dest,
|
||||
size_t sample_offset,
|
||||
const tensor& src
|
||||
);
|
||||
/*!
|
||||
requires
|
||||
- dest.nc() == src.nc()
|
||||
- dest.nr() == src.nr()
|
||||
- dest.num_samples() == src.num_samples()
|
||||
- dest.k() <= src.k() - sample_offset
|
||||
- is_same_object(dest,src) == false
|
||||
- sample_offset a count of elements, not bytes
|
||||
ensures
|
||||
- performs: dest[i, k, r, c] = src[i, k + sample_offset, r, c], where k in [0..dest.k()]
|
||||
Fills each sample of dst from the corresponding part of each sample at src
|
||||
!*/
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
|
@ -33,6 +33,7 @@ ENDMACRO()
|
||||
if (COMPILER_CAN_DO_CPP_11)
|
||||
add_example(dnn_mnist_ex)
|
||||
add_example(dnn_mnist_advanced_ex)
|
||||
add_example(dnn_inception_ex)
|
||||
endif()
|
||||
|
||||
#here we apply our macros
|
||||
|
145
examples/dnn_inception_ex.cpp
Normal file
145
examples/dnn_inception_ex.cpp
Normal file
@ -0,0 +1,145 @@
|
||||
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
||||
/*
|
||||
This is an example illustrating the use of the deep learning tools from the
|
||||
dlib C++ Library. I'm assuming you have already read the dnn_mnist_ex.cpp
|
||||
example. So in this example program I'm going to go over a number of more
|
||||
advanced parts of the API, including:
|
||||
- Using grp layer for constructing inception layer
|
||||
|
||||
Inception layer is a kind of NN architecture for running sevelar convolution types
|
||||
on the same input area and joining all convolution results into one output.
|
||||
For further reading refer http://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
|
||||
*/
|
||||
|
||||
|
||||
#include <dlib/dnn.h>
|
||||
#include <iostream>
|
||||
#include <dlib/data_io.h>
|
||||
#include <tuple>
|
||||
|
||||
using namespace std;
|
||||
using namespace dlib;
|
||||
|
||||
// Here we define inception module as described in GoogLeNet specification. The depth of each sublayer can be changed
|
||||
template<typename SUBNET>
|
||||
using inception = grp<std::tuple<con<8,1,1,1,1, group_input>,
|
||||
con<8,3,3,1,1, con<8,1,1,1,1, group_input>>,
|
||||
con<8,5,5,1,1, con<8,1,1,1,1, group_input>>,
|
||||
con<8,1,1,1,1, max_pool<3,3,1,1, group_input>>>,
|
||||
SUBNET>;
|
||||
|
||||
int main(int argc, char** argv) try
|
||||
{
|
||||
// This example is going to run on the MNIST dataset.
|
||||
if (argc != 2)
|
||||
{
|
||||
cout << "This example needs the MNIST dataset to run!" << endl;
|
||||
cout << "You can get MNIST from http://yann.lecun.com/exdb/mnist/" << endl;
|
||||
cout << "Download the 4 files that comprise the dataset, decompress them, and" << endl;
|
||||
cout << "put them in a folder. Then give that folder as input to this program." << endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
std::vector<matrix<unsigned char>> training_images;
|
||||
std::vector<unsigned long> training_labels;
|
||||
std::vector<matrix<unsigned char>> testing_images;
|
||||
std::vector<unsigned long> testing_labels;
|
||||
load_mnist_dataset(argv[1], training_images, training_labels, testing_images, testing_labels);
|
||||
|
||||
|
||||
// Create a the same network as in dnn_mnist_ex, but use inception layer insteam of convolution
|
||||
// in the middle
|
||||
using net_type = loss_multiclass_log<
|
||||
fc<10,
|
||||
relu<fc<84,
|
||||
relu<fc<120,
|
||||
max_pool<2,2,2,2,relu<inception<
|
||||
max_pool<2,2,2,2,relu<con<6,5,5,1,1,
|
||||
input<matrix<unsigned char>>
|
||||
>>>>>>>>>>>>;
|
||||
|
||||
|
||||
// Create a network as defined above. This network will produce 10 outputs
|
||||
// because that's how we defined net_type. However, fc layers can have the
|
||||
// number of outputs they produce changed at runtime.
|
||||
net_type net;
|
||||
|
||||
// the following training process is the same as in dnn_mnist_ex sample
|
||||
|
||||
// And then train it using the MNIST data. The code below uses mini-batch stochastic
|
||||
// gradient descent with an initial learning rate of 0.01 to accomplish this.
|
||||
dnn_trainer<net_type> trainer(net);
|
||||
trainer.set_learning_rate(0.01);
|
||||
trainer.set_min_learning_rate(0.00001);
|
||||
trainer.set_mini_batch_size(128);
|
||||
trainer.be_verbose();
|
||||
// Since DNN training can take a long time, we can ask the trainer to save its state to
|
||||
// a file named "mnist_sync" every 20 seconds. This way, if we kill this program and
|
||||
// start it again it will begin where it left off rather than restarting the training
|
||||
// from scratch. This is because, when the program restarts, this call to
|
||||
// set_synchronization_file() will automatically reload the settings from mnist_sync if
|
||||
// the file exists.
|
||||
trainer.set_synchronization_file("mnist_sync", std::chrono::seconds(20));
|
||||
// Finally, this line begins training. By default, it runs SGD with our specified
|
||||
// learning rate until the loss stops decreasing. Then it reduces the learning rate by
|
||||
// a factor of 10 and continues running until the loss stops decreasing again. It will
|
||||
// keep doing this until the learning rate has dropped below the min learning rate
|
||||
// defined above or the maximum number of epochs as been executed (defaulted to 10000).
|
||||
trainer.train(training_images, training_labels);
|
||||
|
||||
// At this point our net object should have learned how to classify MNIST images. But
|
||||
// before we try it out let's save it to disk. Note that, since the trainer has been
|
||||
// running images through the network, net will have a bunch of state in it related to
|
||||
// the last batch of images it processed (e.g. outputs from each layer). Since we
|
||||
// don't care about saving that kind of stuff to disk we can tell the network to forget
|
||||
// about that kind of transient data so that our file will be smaller. We do this by
|
||||
// "cleaning" the network before saving it.
|
||||
net.clean();
|
||||
serialize("mnist_network.dat") << net;
|
||||
// Now if we later wanted to recall the network from disk we can simply say:
|
||||
// deserialize("mnist_network.dat") >> net;
|
||||
|
||||
|
||||
// Now let's run the training images through the network. This statement runs all the
|
||||
// images through it and asks the loss layer to convert the network's raw output into
|
||||
// labels. In our case, these labels are the numbers between 0 and 9.
|
||||
std::vector<unsigned long> predicted_labels = net(training_images);
|
||||
int num_right = 0;
|
||||
int num_wrong = 0;
|
||||
// And then let's see if it classified them correctly.
|
||||
for (size_t i = 0; i < training_images.size(); ++i)
|
||||
{
|
||||
if (predicted_labels[i] == training_labels[i])
|
||||
++num_right;
|
||||
else
|
||||
++num_wrong;
|
||||
|
||||
}
|
||||
cout << "training num_right: " << num_right << endl;
|
||||
cout << "training num_wrong: " << num_wrong << endl;
|
||||
cout << "training accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
|
||||
|
||||
// Let's also see if the network can correctly classify the testing images. Since
|
||||
// MNIST is an easy dataset, we should see at least 99% accuracy.
|
||||
predicted_labels = net(testing_images);
|
||||
num_right = 0;
|
||||
num_wrong = 0;
|
||||
for (size_t i = 0; i < testing_images.size(); ++i)
|
||||
{
|
||||
if (predicted_labels[i] == testing_labels[i])
|
||||
++num_right;
|
||||
else
|
||||
++num_wrong;
|
||||
|
||||
}
|
||||
cout << "testing num_right: " << num_right << endl;
|
||||
cout << "testing num_wrong: " << num_wrong << endl;
|
||||
cout << "testing accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
|
||||
|
||||
}
|
||||
catch(std::exception& e)
|
||||
{
|
||||
cout << e.what() << endl;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user