mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
added the krls example
--HG-- extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402254
This commit is contained in:
parent
2ae506deac
commit
246a14f996
@ -33,6 +33,7 @@ add_example(dir_nav_ex)
|
||||
add_example(file_to_code_ex)
|
||||
add_example(gui_api_ex)
|
||||
add_example(image_ex)
|
||||
add_example(krls_ex)
|
||||
add_example(logger_ex)
|
||||
add_example(logger_ex_2)
|
||||
add_example(matrix_ex)
|
||||
|
73
examples/krls_ex.cpp
Normal file
73
examples/krls_ex.cpp
Normal file
@ -0,0 +1,73 @@
|
||||
/*
|
||||
This is an example illustrating the use of the krls object
|
||||
from the dlib C++ Library.
|
||||
|
||||
The krls object allows you to perform online regression. This
|
||||
example will train an instance of it on the sinc function.
|
||||
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "dlib/svm.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace dlib;
|
||||
|
||||
// Here is the sinc function we will be trying to learn with the krls
|
||||
// object.
|
||||
double sinc(double x)
|
||||
{
|
||||
if (x == 0)
|
||||
return 1;
|
||||
return sin(x)/x;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
// Here we declare that our samples will be 1 dimensional column vectors. The reason for
|
||||
// using a matrix here is that in general you can use N dimensional vectors as inputs to the
|
||||
// krls object. But here we only have 1 dimension to make the example simple.
|
||||
typedef matrix<double,1,1> sample_type;
|
||||
|
||||
// Now we are making a typedef for the kind of kernel we want to use. I picked the
|
||||
// radial basis kernel because it only has one parameter and generally gives good
|
||||
// results without much fiddling.
|
||||
typedef radial_basis_kernel<sample_type> kernel_type;
|
||||
|
||||
// Here we declare an instance of the krls object. The first argument to the constructor
|
||||
// is the kernel we wish to use. The second is a parameter that determines the numerical
|
||||
// accuracy with which the object will perform part of the regression algorithm. Generally
|
||||
// smaller values give better results but cause the algorithm to run slower. You just have
|
||||
// to play with it to decide what balance of speed and accuracy is right for your problem.
|
||||
// Here we have set it to 0.001.
|
||||
krls<kernel_type> test(kernel_type(0.1),0.001);
|
||||
|
||||
// now we train our object on a few samples of the sinc function.
|
||||
sample_type m;
|
||||
for (double x = -10; x <= 4; x += 1)
|
||||
{
|
||||
m(0) = x;
|
||||
test.train(m, sinc(x));
|
||||
}
|
||||
|
||||
// now we output the value of the sinc function for a few test points as well as the
|
||||
// value predicted by krls object.
|
||||
m(0) = 2.5; cout << sinc(m(0)) << " " << test(m) << endl;
|
||||
m(0) = 0.1; cout << sinc(m(0)) << " " << test(m) << endl;
|
||||
m(0) = -4; cout << sinc(m(0)) << " " << test(m) << endl;
|
||||
m(0) = 5.0; cout << sinc(m(0)) << " " << test(m) << endl;
|
||||
|
||||
// The output is as follows:
|
||||
// 0.239389 0.238808
|
||||
// 0.998334 0.997779
|
||||
// -0.189201 -0.189754
|
||||
// -0.191785 -0.1979
|
||||
|
||||
// The first column is the true value of the sinc function and the second
|
||||
// column is the output from the krls estimate.
|
||||
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user