Cleaned up the new python object detection interface a little.

This commit is contained in:
Davis King 2014-02-23 16:02:52 -05:00
parent 8f6b76e7ca
commit 2293c91e00
3 changed files with 75 additions and 20 deletions

View File

@ -232,6 +232,8 @@ void bind_object_detection()
&simple_object_detector_training_options::add_left_right_image_flips)
.add_property("detection_window_size", &simple_object_detector_training_options::detection_window_size,
&simple_object_detector_training_options::detection_window_size)
.add_property("C", &simple_object_detector_training_options::C,
&simple_object_detector_training_options::C)
.add_property("num_threads", &simple_object_detector_training_options::num_threads,
&simple_object_detector_training_options::num_threads);
@ -261,12 +263,64 @@ void bind_object_detection()
"Returns the default face detector");
def("train_simple_object_detector", train_simple_object_detector,
(arg("dataset_filename"), arg("detector_output_filename"), arg("C"), arg("options")=simple_object_detector_training_options()),
"whatever");
(arg("dataset_filename"), arg("detector_output_filename"), arg("options")),
"requires \n\
- options.C > 0 \n\
ensures \n\
- Uses the structural_object_detection_trainer to train a \n\
simple_object_detector based on the labeled images in the XML file \n\
dataset_filename. This function assumes the file dataset_filename is in the \n\
XML format produced by dlib's save_image_dataset_metadata() routine. \n\
- This function will apply a reasonable set of default parameters and \n\
preprocessing techniques to the training procedure for simple_object_detector \n\
objects. So the point of this function is to provide you with a very easy \n\
way to train a basic object detector. \n\
- The trained object detector is serialized to the file detector_output_filename."
/*!
requires
- options.C > 0
ensures
- Uses the structural_object_detection_trainer to train a
simple_object_detector based on the labeled images in the XML file
dataset_filename. This function assumes the file dataset_filename is in the
XML format produced by dlib's save_image_dataset_metadata() routine.
- This function will apply a reasonable set of default parameters and
preprocessing techniques to the training procedure for simple_object_detector
objects. So the point of this function is to provide you with a very easy
way to train a basic object detector.
- The trained object detector is serialized to the file detector_output_filename.
!*/
);
def("test_simple_object_detector", test_simple_object_detector,
(arg("dataset_filename"), arg("detector_filename")),
"whatever");
"ensures \n\
- Loads an image dataset from dataset_filename. We assume dataset_filename is \n\
a file using the XML format written by save_image_dataset_metadata(). \n\
- Loads a simple_object_detector from the file detector_filename. This means \n\
detector_filename should be a file produced by the train_simple_object_detector() \n\
routine. \n\
- This function tests the detector against the dataset and returns the \n\
precision, recall, and average precision of the detector. In fact, The \n\
return value of this function is identical to that of dlib's \n\
test_object_detection_function() routine. Therefore, see the documentation \n\
for test_object_detection_function() for a detailed definition of these \n\
metrics. "
/*!
ensures
- Loads an image dataset from dataset_filename. We assume dataset_filename is
a file using the XML format written by save_image_dataset_metadata().
- Loads a simple_object_detector from the file detector_filename. This means
detector_filename should be a file produced by the train_simple_object_detector()
routine.
- This function tests the detector against the dataset and returns the
precision, recall, and average precision of the detector. In fact, The
return value of this function is identical to that of dlib's
test_object_detection_function() routine. Therefore, see the documentation
for test_object_detection_function() for a detailed definition of these
metrics.
!*/
);
{
typedef simple_object_detector_py type;

View File

@ -30,12 +30,14 @@ namespace dlib
add_left_right_image_flips = false;
num_threads = 4;
detection_window_size = 80*80;
C = 1;
}
bool be_verbose;
bool add_left_right_image_flips;
unsigned long num_threads;
unsigned long detection_window_size;
double C;
};
// ----------------------------------------------------------------------------------------
@ -119,11 +121,10 @@ namespace dlib
inline void train_simple_object_detector (
const std::string& dataset_filename,
const std::string& detector_output_filename,
const double C,
const simple_object_detector_training_options& options = simple_object_detector_training_options()
const simple_object_detector_training_options& options
)
{
if (C <= 0)
if (options.C <= 0)
throw error("Invalid C value given to train_simple_object_detector(), C must be > 0.");
dlib::array<array2d<unsigned char> > images;
@ -140,11 +141,11 @@ namespace dlib
scanner.set_detection_window_size(width, height);
structural_object_detection_trainer<image_scanner_type> trainer(scanner);
trainer.set_num_threads(options.num_threads);
trainer.set_c(C);
trainer.set_c(options.C);
trainer.set_epsilon(0.01);
if (options.be_verbose)
{
std::cout << "Training with C: " << C << std::endl;
std::cout << "Training with C: " << options.C << std::endl;
std::cout << "Training using " << options.num_threads << " threads."<< std::endl;
std::cout << "Training with sliding window " << width << " pixels wide by " << height << " pixels tall." << std::endl;
if (options.add_left_right_image_flips)
@ -195,7 +196,7 @@ namespace dlib
if (options.be_verbose)
{
std::cout << "Training complete, saved detector to file " << detector_output_filename << std::endl;
std::cout << "Trained with C: " << C << std::endl;
std::cout << "Trained with C: " << options.C << std::endl;
std::cout << "Trained using " << options.num_threads << " threads."<< std::endl;
std::cout << "Trained with sliding window " << width << " pixels wide by " << height << " pixels tall." << std::endl;
if (upsample_amount != 0)

View File

@ -19,9 +19,8 @@ namespace dlib
{
/*!
WHAT THIS OBJECT REPRESENTS
This object is a container for the more advanced options to the
train_simple_object_detector() routine. The parameters have the following
interpretations:
This object is a container for the options to the train_simple_object_detector()
routine. The parameters have the following interpretations:
- be_verbose: If true, train_simple_object_detector() will print out a
lot of information to the screen while training.
- add_left_right_image_flips: if true, train_simple_object_detector()
@ -33,6 +32,11 @@ namespace dlib
machine to obtain the fastest training speed.
- detection_window_size: The sliding window used will have about this
many pixels inside it.
- C is the usual SVM C regularization parameter. So it is passed to
structural_object_detection_trainer::set_c(). Larger values of C
will encourage the trainer to fit the data better but might lead to
overfitting. Therefore, you must determine the proper setting of
this parameter experimentally.
!*/
fhog_training_options()
@ -41,12 +45,14 @@ namespace dlib
add_left_right_image_flips = false;
num_threads = 4;
detection_window_size = 80*80;
C = 1;
}
bool be_verbose;
bool add_left_right_image_flips;
unsigned long num_threads;
unsigned long detection_window_size;
double C;
};
// ----------------------------------------------------------------------------------------
@ -58,12 +64,11 @@ namespace dlib
void train_simple_object_detector (
const std::string& dataset_filename,
const std::string& detector_output_filename,
const double C,
const fhog_training_options& options = fhog_training_options()
const fhog_training_options& options
);
/*!
requires
- C > 0
- options.C > 0
ensures
- Uses the structural_object_detection_trainer to train a
simple_object_detector based on the labeled images in the XML file
@ -73,11 +78,6 @@ namespace dlib
preprocessing techniques to the training procedure for simple_object_detector
objects. So the point of this function is to provide you with a very easy
way to train a basic object detector.
- C is the usual SVM C regularization parameter. So it is passed to
structural_object_detection_trainer::set_c(). Larger values of C will
encourage the trainer to fit the data better but might lead to overfitting.
Therefore, you must determine the proper setting of this parameter
experimentally.
- The trained object detector is serialized to the file detector_output_filename.
!*/