mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
Added tt::resize_bilinear() and tt::resize_bilinear_gradient().
This commit is contained in:
parent
9cd06ce372
commit
198569460e
@ -1401,6 +1401,107 @@ namespace dlib
|
||||
}
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void resize_bilinear (
|
||||
tensor& dest,
|
||||
const tensor& src
|
||||
)
|
||||
{
|
||||
DLIB_CASSERT(is_same_object(dest, src)==false);
|
||||
DLIB_CASSERT(dest.num_samples() == src.num_samples());
|
||||
DLIB_CASSERT(dest.k() == src.k());
|
||||
|
||||
if (dest.size() == 0 || src.size() == 0)
|
||||
return;
|
||||
|
||||
const float* s = src.host();
|
||||
float* d = dest.host();
|
||||
const float x_scale = (src.nc()-1)/(float)std::max<long>((dest.nc()-1),1);
|
||||
const float y_scale = (src.nr()-1)/(float)std::max<long>((dest.nr()-1),1);
|
||||
for (long samp = 0; samp < dest.num_samples(); ++samp)
|
||||
{
|
||||
for (long k = 0; k < dest.k(); ++k)
|
||||
{
|
||||
for (long r = 0; r < dest.nr(); ++r)
|
||||
{
|
||||
const float y = r*y_scale;
|
||||
const long top = static_cast<long>(std::floor(y));
|
||||
const long bottom = std::min(top+1, src.nr()-1);
|
||||
const float tb_frac = y - top;
|
||||
for (long c = 0; c < dest.nc(); ++c)
|
||||
{
|
||||
const float x = c*x_scale;
|
||||
const long left = static_cast<long>(std::floor(x));
|
||||
const long right = std::min(left+1, src.nc()-1);
|
||||
const float lr_frac = x - left;
|
||||
|
||||
float tl = s[top*src.nc()+left];
|
||||
float tr = s[top*src.nc()+right];
|
||||
float bl = s[bottom*src.nc()+left];
|
||||
float br = s[bottom*src.nc()+right];
|
||||
|
||||
float temp = (1-tb_frac)*((1-lr_frac)*tl + lr_frac*tr) +
|
||||
tb_frac*((1-lr_frac)*bl + lr_frac*br);
|
||||
|
||||
d[r*dest.nc()+c] = temp;
|
||||
}
|
||||
}
|
||||
|
||||
d += dest.nr()*dest.nc();
|
||||
s += src.nr()*src.nc();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void resize_bilinear_gradient (
|
||||
tensor& grad,
|
||||
const tensor& gradient_input
|
||||
)
|
||||
{
|
||||
DLIB_CASSERT(is_same_object(grad, gradient_input)==false);
|
||||
DLIB_CASSERT(gradient_input.num_samples() == grad.num_samples());
|
||||
DLIB_CASSERT(gradient_input.k() == grad.k());
|
||||
|
||||
if (gradient_input.size() == 0 || grad.size() == 0)
|
||||
return;
|
||||
|
||||
const float* gi = gradient_input.host();
|
||||
float* g = grad.host();
|
||||
const float x_scale = (grad.nc()-1)/(float)std::max<long>((gradient_input.nc()-1),1);
|
||||
const float y_scale = (grad.nr()-1)/(float)std::max<long>((gradient_input.nr()-1),1);
|
||||
for (long samp = 0; samp < gradient_input.num_samples(); ++samp)
|
||||
{
|
||||
for (long k = 0; k < gradient_input.k(); ++k)
|
||||
{
|
||||
for (long r = 0; r < gradient_input.nr(); ++r)
|
||||
{
|
||||
const float y = r*y_scale;
|
||||
const long top = static_cast<long>(std::floor(y));
|
||||
const long bottom = std::min(top+1, grad.nr()-1);
|
||||
const float tb_frac = y - top;
|
||||
for (long c = 0; c < gradient_input.nc(); ++c)
|
||||
{
|
||||
const float x = c*x_scale;
|
||||
const long left = static_cast<long>(std::floor(x));
|
||||
const long right = std::min(left+1, grad.nc()-1);
|
||||
const float lr_frac = x - left;
|
||||
|
||||
const float tmp = gi[r*gradient_input.nc()+c];
|
||||
|
||||
g[top*grad.nc()+left] += tmp*(1-tb_frac)*(1-lr_frac);
|
||||
g[top*grad.nc()+right] += tmp*(1-tb_frac)*(lr_frac);
|
||||
g[bottom*grad.nc()+left] += tmp*(tb_frac)*(1-lr_frac);
|
||||
g[bottom*grad.nc()+right] += tmp*(tb_frac)*(lr_frac);
|
||||
}
|
||||
}
|
||||
|
||||
g += grad.nr()*grad.nc();
|
||||
gi += gradient_input.nr()*gradient_input.nc();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------------------
|
||||
// ------------------------------------------------------------------------------------
|
||||
// ------------------------------------------------------------------------------------
|
||||
|
@ -296,6 +296,18 @@ namespace dlib
|
||||
const tensor& gradient_input
|
||||
);
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void resize_bilinear (
|
||||
tensor& dest,
|
||||
const tensor& src
|
||||
);
|
||||
|
||||
void resize_bilinear_gradient (
|
||||
tensor& grad,
|
||||
const tensor& gradient_input
|
||||
);
|
||||
|
||||
// -----------------------------------------------------------------------------------
|
||||
|
||||
class pooling
|
||||
|
@ -1137,6 +1137,116 @@ namespace dlib
|
||||
param.device(), params_grad.device());
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
__global__ void _cuda_resize_bilinear(size_t dsize, size_t dchan_size, size_t dnc, float* d,
|
||||
size_t schan_size, int snr, int snc, const float* s,
|
||||
const float x_scale, const float y_scale)
|
||||
{
|
||||
for(auto i : grid_stride_range(0, dsize))
|
||||
{
|
||||
const int idx = i%dchan_size;
|
||||
const int channel = i/dchan_size;
|
||||
const int sidx = channel*schan_size;
|
||||
const int r = idx/dnc;
|
||||
const int c = idx%dnc;
|
||||
|
||||
const float y = r*y_scale;
|
||||
const int top = static_cast<int>(::floor(y));
|
||||
const int bottom = ::min(top+1, snr-1);
|
||||
const float tb_frac = y - top;
|
||||
|
||||
const float x = c*x_scale;
|
||||
const int left = static_cast<int>(::floor(x));
|
||||
const int right = ::min(left+1, snc-1);
|
||||
const float lr_frac = x - left;
|
||||
|
||||
float tl = s[sidx+top*snc+left];
|
||||
float tr = s[sidx+top*snc+right];
|
||||
float bl = s[sidx+bottom*snc+left];
|
||||
float br = s[sidx+bottom*snc+right];
|
||||
|
||||
float temp = (1-tb_frac)*((1-lr_frac)*tl + lr_frac*tr) +
|
||||
tb_frac*((1-lr_frac)*bl + lr_frac*br);
|
||||
|
||||
d[i] = temp;
|
||||
}
|
||||
}
|
||||
|
||||
void resize_bilinear (
|
||||
tensor& dest,
|
||||
const tensor& src
|
||||
)
|
||||
{
|
||||
DLIB_CASSERT(is_same_object(dest, src)==false);
|
||||
DLIB_CASSERT(dest.num_samples() == src.num_samples());
|
||||
DLIB_CASSERT(dest.k() == src.k());
|
||||
|
||||
if (dest.size() == 0 || src.size() == 0)
|
||||
return;
|
||||
|
||||
const float x_scale = (src.nc()-1)/(float)std::max<long>((dest.nc()-1),1);
|
||||
const float y_scale = (src.nr()-1)/(float)std::max<long>((dest.nr()-1),1);
|
||||
|
||||
launch_kernel(_cuda_resize_bilinear,
|
||||
dest.size(), dest.nr()*dest.nc(), dest.nc(), dest.device(),
|
||||
src.nr()*src.nc(), src.nr(), src.nc(), src.device(),
|
||||
x_scale, y_scale);
|
||||
}
|
||||
|
||||
__global__ void _cuda_resize_bilinear_gradient(size_t dsize, size_t dchan_size, size_t dnc, const float* d,
|
||||
size_t schan_size, int snr, int snc, float* s,
|
||||
const float x_scale, const float y_scale)
|
||||
{
|
||||
for(auto i : grid_stride_range(0, dsize))
|
||||
{
|
||||
const float tmp = d[i];
|
||||
|
||||
const int idx = i%dchan_size;
|
||||
const int channel = i/dchan_size;
|
||||
const int sidx = channel*schan_size;
|
||||
const int r = idx/dnc;
|
||||
const int c = idx%dnc;
|
||||
|
||||
const float y = r*y_scale;
|
||||
const int top = static_cast<int>(::floor(y));
|
||||
const int bottom = ::min(top+1, snr-1);
|
||||
const float tb_frac = y - top;
|
||||
|
||||
const float x = c*x_scale;
|
||||
const int left = static_cast<int>(::floor(x));
|
||||
const int right = ::min(left+1, snc-1);
|
||||
const float lr_frac = x - left;
|
||||
|
||||
|
||||
atomicAdd(s+sidx+top*snc+left, tmp*(1-tb_frac)*(1-lr_frac));
|
||||
atomicAdd(s+sidx+top*snc+right, tmp*(1-tb_frac)*(lr_frac));
|
||||
atomicAdd(s+sidx+bottom*snc+left, tmp*(tb_frac)*(1-lr_frac));
|
||||
atomicAdd(s+sidx+bottom*snc+right, tmp*(tb_frac)*(lr_frac));
|
||||
}
|
||||
}
|
||||
|
||||
void resize_bilinear_gradient (
|
||||
tensor& grad,
|
||||
const tensor& gradient_input
|
||||
)
|
||||
{
|
||||
DLIB_CASSERT(is_same_object(grad, gradient_input)==false);
|
||||
DLIB_CASSERT(gradient_input.num_samples() == grad.num_samples());
|
||||
DLIB_CASSERT(gradient_input.k() == grad.k());
|
||||
|
||||
if (grad.size() == 0 || gradient_input.size() == 0)
|
||||
return;
|
||||
|
||||
const float x_scale = (grad.nc()-1)/(float)std::max<long>((gradient_input.nc()-1),1);
|
||||
const float y_scale = (grad.nr()-1)/(float)std::max<long>((gradient_input.nr()-1),1);
|
||||
|
||||
launch_kernel(_cuda_resize_bilinear_gradient,
|
||||
gradient_input.size(), gradient_input.nr()*gradient_input.nc(), gradient_input.nc(), gradient_input.device(),
|
||||
grad.nr()*grad.nc(), grad.nr(), grad.nc(), grad.device(),
|
||||
x_scale, y_scale);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void copy_tensor(
|
||||
|
@ -346,13 +346,29 @@ namespace dlib
|
||||
tensor& params_grad
|
||||
);
|
||||
|
||||
void copy_tensor(
|
||||
tensor& dest,
|
||||
size_t dest_k_offset,
|
||||
const tensor& src,
|
||||
size_t src_k_offset,
|
||||
size_t count_k
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void resize_bilinear (
|
||||
tensor& dest,
|
||||
const tensor& src
|
||||
);
|
||||
|
||||
void resize_bilinear_gradient (
|
||||
tensor& grad,
|
||||
const tensor& gradient_input
|
||||
);
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void copy_tensor(
|
||||
tensor& dest,
|
||||
size_t dest_k_offset,
|
||||
const tensor& src,
|
||||
size_t src_k_offset,
|
||||
size_t count_k
|
||||
);
|
||||
|
||||
// ------------------------------------------------------------------------------------
|
||||
// ------------------------------------------------------------------------------------
|
||||
// ------------------------------------------------------------------------------------
|
||||
|
@ -838,6 +838,32 @@ namespace dlib { namespace tt
|
||||
#endif
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void resize_bilinear (
|
||||
tensor& dest,
|
||||
const tensor& src
|
||||
)
|
||||
{
|
||||
#ifdef DLIB_USE_CUDA
|
||||
cuda::resize_bilinear(dest,src);
|
||||
#else
|
||||
cpu::resize_bilinear(dest,src);
|
||||
#endif
|
||||
}
|
||||
|
||||
void resize_bilinear_gradient (
|
||||
tensor& grad,
|
||||
const tensor& gradient_input
|
||||
)
|
||||
{
|
||||
#ifdef DLIB_USE_CUDA
|
||||
cuda::resize_bilinear_gradient(grad,gradient_input);
|
||||
#else
|
||||
cpu::resize_bilinear_gradient(grad,gradient_input);
|
||||
#endif
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------------------
|
||||
|
||||
void copy_tensor(
|
||||
|
@ -1350,6 +1350,41 @@ namespace dlib { namespace tt
|
||||
is_same_object(grad, gradient_input)==true
|
||||
!*/
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void resize_bilinear (
|
||||
tensor& dest,
|
||||
const tensor& src
|
||||
);
|
||||
/*!
|
||||
requires
|
||||
- is_same_object(dest, src)==false
|
||||
- dest.num_samples() == src.num_samples()
|
||||
- dest.k() == src.k()
|
||||
ensures
|
||||
- for all valid i,k: image_plane(dest,i,k) is a copy of image_plane(src,i,k)
|
||||
that has been bilinearly interpolated to fit into the shape of
|
||||
image_plane(dest,i,k).
|
||||
!*/
|
||||
|
||||
void resize_bilinear_gradient (
|
||||
tensor& grad,
|
||||
const tensor& gradient_input
|
||||
);
|
||||
/*!
|
||||
requires
|
||||
- is_same_object(grad, gradient_input)==false
|
||||
- gradient_input.num_samples() == grad.num_samples()
|
||||
- gradient_input.k() == grad.k()
|
||||
ensures
|
||||
- Suppose that DEST is the output of resize_bilinear(DEST,SRC) for some SRC
|
||||
tensor, let f(SRC) == dot(gradient_input,DEST). Then this function computes
|
||||
the gradient of f() with respect to SRC and adds it to grad. It should be
|
||||
noted that we don't need to know the contents of DEST to compute this
|
||||
gradient. All that matters is that gradient_input have the same dimensions
|
||||
as DEST.
|
||||
!*/
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
class multi_device_tensor_averager
|
||||
|
@ -2303,6 +2303,69 @@ namespace
|
||||
"Number of correctly classified elements = " << num_correct << ", required = " << num_correct_required);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
void test_tensor_resize_bilienar(long samps, long k, long nr, long nc, long onr, long onc)
|
||||
{
|
||||
resizable_tensor img(samps,k,nr,nc);
|
||||
resizable_tensor out(samps,k,onr,onc);
|
||||
resizable_tensor out2(samps,k,onr,onc);
|
||||
|
||||
dlib::rand rnd;
|
||||
for (int iter = 0; iter < 10; ++iter)
|
||||
{
|
||||
print_spinner();
|
||||
|
||||
const size_t idx = rnd.get_random_64bit_number()%img.size();
|
||||
|
||||
img = 1;
|
||||
img.host()[idx] = 2;
|
||||
cpu::resize_bilinear(out, img);
|
||||
#ifdef DLIB_USE_CUDA
|
||||
cuda::resize_bilinear(out2, img);
|
||||
DLIB_CASSERT(max(abs(mat(out)-mat(out2))) < 1e-5);
|
||||
#endif
|
||||
|
||||
resizable_tensor gradient_input;
|
||||
gradient_input.copy_size(out);
|
||||
tt::tensor_rand rnd;
|
||||
rnd.fill_uniform(gradient_input);
|
||||
|
||||
const float h = 1e-2;
|
||||
|
||||
img.host()[idx] = 2;
|
||||
cpu::resize_bilinear(out, img);
|
||||
float f1 = dot(out, gradient_input);
|
||||
|
||||
img.host()[idx] = 2+h;
|
||||
cpu::resize_bilinear(out, img);
|
||||
float f2 = dot(out, gradient_input);
|
||||
|
||||
const float numerical_grad = (f2-f1)/h;
|
||||
dlog << LINFO << "numerical grad: " << numerical_grad;
|
||||
|
||||
|
||||
resizable_tensor grad, grad2;
|
||||
grad.copy_size(img);
|
||||
grad = 0.1;
|
||||
grad2.copy_size(img);
|
||||
grad2 = 0.1;
|
||||
|
||||
cpu::resize_bilinear_gradient(grad2, gradient_input);
|
||||
dlog << LINFO << "analytic grad: "<< grad2.host()[idx]-0.1;
|
||||
DLIB_CASSERT(std::abs(numerical_grad - grad2.host()[idx]+0.1) < 1e-2, std::abs(numerical_grad - grad2.host()[idx]+0.1) << " numerical_grad: " << numerical_grad);
|
||||
|
||||
#ifdef DLIB_USE_CUDA
|
||||
cuda::resize_bilinear_gradient(grad, gradient_input);
|
||||
dlog << LINFO << "analytic grad: "<< grad.host()[idx]-0.1;
|
||||
DLIB_CASSERT(std::abs(numerical_grad - grad.host()[idx]+0.1) < 1e-2, std::abs(numerical_grad - grad.host()[idx]+0.1) << " numerical_grad: " << numerical_grad);
|
||||
DLIB_CASSERT(max(abs(mat(grad)-mat(grad2))) < 1e-5);
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ----------------------------------------------------------------------------------------
|
||||
|
||||
class dnn_tester : public tester
|
||||
@ -2337,6 +2400,9 @@ namespace
|
||||
compare_adam();
|
||||
test_copy_tensor_gpu();
|
||||
#endif
|
||||
test_tensor_resize_bilienar(2, 3, 6,6, 11, 11);
|
||||
test_tensor_resize_bilienar(2, 3, 6,6, 3, 4);
|
||||
test_tensor_resize_bilienar(2, 3, 5,6, 12, 21);
|
||||
test_max_pool(1,1,2,3,0,0);
|
||||
test_max_pool(3,3,1,1,0,0);
|
||||
test_max_pool(3,3,2,2,0,0);
|
||||
|
Loading…
Reference in New Issue
Block a user