Moved the point/vector rotation/transformation code into its own file.

This commit is contained in:
Davis King 2012-12-11 21:18:57 -05:00
parent a30fa632fa
commit 0f9f0e7733
5 changed files with 286 additions and 247 deletions

View File

@ -6,6 +6,7 @@
#include "geometry/rectangle.h"
#include "geometry/vector.h"
#include "geometry/border_enumerator.h"
#include "geometry/point_transforms.h"
#endif // DLIB_GEOMETRy_HEADER

View File

@ -0,0 +1,133 @@
// Copyright (C) 2003 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_POINT_TrANSFORMS_H_
#define DLIB_POINT_TrANSFORMS_H_
#include "point_transforms_abstract.h"
#include "../algs.h"
#include "../matrix.h"
#include "vector.h"
#include <vector>
namespace dlib
{
// ----------------------------------------------------------------------------------------
class point_rotator
{
public:
point_rotator (
const double& angle
)
{
sin_angle = std::sin(angle);
cos_angle = std::cos(angle);
}
template <typename T>
const dlib::vector<T,2> operator() (
const dlib::vector<T,2>& p
) const
{
double x = cos_angle*p.x() - sin_angle*p.y();
double y = sin_angle*p.x() + cos_angle*p.y();
return dlib::vector<double,2>(x,y);
}
private:
double sin_angle;
double cos_angle;
};
// ----------------------------------------------------------------------------------------
class point_transform
{
public:
point_transform (
const double& angle,
const dlib::vector<double,2>& translate_
)
{
sin_angle = std::sin(angle);
cos_angle = std::cos(angle);
translate = translate_;
}
template <typename T>
const dlib::vector<T,2> operator() (
const dlib::vector<T,2>& p
) const
{
double x = cos_angle*p.x() - sin_angle*p.y();
double y = sin_angle*p.x() + cos_angle*p.y();
return dlib::vector<double,2>(x,y) + translate;
}
private:
double sin_angle;
double cos_angle;
dlib::vector<double,2> translate;
};
// ----------------------------------------------------------------------------------------
class point_transform_affine
{
public:
point_transform_affine (
const matrix<double,2,2>& m_,
const dlib::vector<double,2>& b_
) :m(m_), b(b_)
{
}
const dlib::vector<double,2> operator() (
const dlib::vector<double,2>& p
) const
{
return m*p + b;
}
private:
matrix<double,2,2> m;
dlib::vector<double,2> b;
};
// ----------------------------------------------------------------------------------------
template <typename T>
const dlib::vector<T,2> rotate_point (
const dlib::vector<T,2>& center,
const dlib::vector<T,2>& p,
double angle
)
{
point_rotator rot(angle);
return rot(p-center)+center;
}
// ----------------------------------------------------------------------------------------
inline matrix<double,2,2> rotation_matrix (
double angle
)
{
const double ca = std::cos(angle);
const double sa = std::sin(angle);
matrix<double,2,2> m;
m = ca, -sa,
sa, ca;
return m;
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_POINT_TrANSFORMS_H_

View File

@ -0,0 +1,152 @@
// Copyright (C) 2003 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_POINT_TrANSFORMS_ABSTRACT_H__
#ifdef DLIB_POINT_TrANSFORMS_ABSTRACT_H__
#include "../matrix/matrix_abstract.h"
#include "../vector_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
class point_transform_affine
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
applies an affine transformation to them.
!*/
public:
point_transform_affine (
const matrix<double,2,2>& m,
const dlib::vector<double,2>& b
);
/*!
ensures
- When (*this)(p) is invoked it will return a point P such that:
- P == m*p + b
!*/
const dlib::vector<double,2> operator() (
const dlib::vector<double,2>& p
) const;
/*!
ensures
- applies the affine transformation defined by this object's constructor
to p and returns the result.
!*/
};
// ----------------------------------------------------------------------------------------
class point_transform
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
rotates them around the origin by a given angle and then
translates them.
!*/
public:
point_transform (
const double& angle,
const dlib::vector<double,2>& translate
)
/*!
ensures
- When (*this)(p) is invoked it will return a point P such that:
- P is the point p rotated counter-clockwise around the origin
angle radians and then shifted by having translate added to it.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
!*/
template <typename T>
const dlib::vector<T,2> operator() (
const dlib::vector<T,2>& p
) const;
/*!
ensures
- rotates p, then translates it and returns the result
!*/
};
// ----------------------------------------------------------------------------------------
class point_rotator
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
rotates them around the origin by a given angle.
!*/
public:
point_rotator (
const double& angle
);
/*!
ensures
- When (*this)(p) is invoked it will return a point P such that:
- P is the point p rotated counter-clockwise around the origin
angle radians.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
!*/
template <typename T>
const dlib::vector<T,2> operator() (
const dlib::vector<T,2>& p
) const;
/*!
ensures
- rotates p and returns the result
!*/
};
// ----------------------------------------------------------------------------------------
template <typename T>
const dlib::vector<T,2> rotate_point (
const dlib::vector<T,2> center,
const dlib::vector<T,2> p,
double angle
);
/*!
ensures
- returns a point P such that:
- P is the point p rotated counter-clockwise around the given
center point by angle radians.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
!*/
// ----------------------------------------------------------------------------------------
matrix<double,2,2> rotation_matrix (
double angle
);
/*!
ensures
- returns a rotation matrix which rotates points around the origin in a
counter-clockwise direction by angle radians.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
Or in other words, this function returns a matrix M such that, given a
point P, M*P gives a point which is P rotated by angle radians around
the origin in a counter-clockwise direction.
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_POINT_TrANSFORMS_ABSTRACT_H__

View File

@ -1258,119 +1258,6 @@ namespace dlib
typedef vector<long,2> point;
// ----------------------------------------------------------------------------------------
class point_rotator
{
public:
point_rotator (
const double& angle
)
{
sin_angle = std::sin(angle);
cos_angle = std::cos(angle);
}
template <typename T>
const dlib::vector<T,2> operator() (
const dlib::vector<T,2>& p
) const
{
double x = cos_angle*p.x() - sin_angle*p.y();
double y = sin_angle*p.x() + cos_angle*p.y();
return dlib::vector<double,2>(x,y);
}
private:
double sin_angle;
double cos_angle;
};
// ----------------------------------------------------------------------------------------
class point_transform
{
public:
point_transform (
const double& angle,
const dlib::vector<double,2>& translate_
)
{
sin_angle = std::sin(angle);
cos_angle = std::cos(angle);
translate = translate_;
}
template <typename T>
const dlib::vector<T,2> operator() (
const dlib::vector<T,2>& p
) const
{
double x = cos_angle*p.x() - sin_angle*p.y();
double y = sin_angle*p.x() + cos_angle*p.y();
return dlib::vector<double,2>(x,y) + translate;
}
private:
double sin_angle;
double cos_angle;
dlib::vector<double,2> translate;
};
// ----------------------------------------------------------------------------------------
class point_transform_affine
{
public:
point_transform_affine (
const matrix<double,2,2>& m_,
const dlib::vector<double,2>& b_
) :m(m_), b(b_)
{
}
const dlib::vector<double,2> operator() (
const dlib::vector<double,2>& p
) const
{
return m*p + b;
}
private:
matrix<double,2,2> m;
dlib::vector<double,2> b;
};
// ----------------------------------------------------------------------------------------
template <typename T>
const dlib::vector<T,2> rotate_point (
const dlib::vector<T,2>& center,
const dlib::vector<T,2>& p,
double angle
)
{
point_rotator rot(angle);
return rot(p-center)+center;
}
// ----------------------------------------------------------------------------------------
inline matrix<double,2,2> rotation_matrix (
double angle
)
{
const double ca = std::cos(angle);
const double sa = std::sin(angle);
matrix<double,2,2> m;
m = ca, -sa,
sa, ca;
return m;
}
// ----------------------------------------------------------------------------------------
}

View File

@ -431,140 +431,6 @@ namespace dlib
typedef vector<long,2> point;
// ----------------------------------------------------------------------------------------
class point_transform_affine
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
applies an affine transformation to them.
!*/
public:
point_transform_affine (
const matrix<double,2,2>& m,
const dlib::vector<double,2>& b
);
/*!
ensures
- When (*this)(p) is invoked it will return a point P such that:
- P == m*p + b
!*/
const dlib::vector<double,2> operator() (
const dlib::vector<double,2>& p
) const;
/*!
ensures
- applies the affine transformation defined by this object's constructor
to p and returns the result.
!*/
};
// ----------------------------------------------------------------------------------------
class point_transform
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
rotates them around the origin by a given angle and then
translates them.
!*/
public:
point_transform (
const double& angle,
const dlib::vector<double,2>& translate
)
/*!
ensures
- When (*this)(p) is invoked it will return a point P such that:
- P is the point p rotated counter-clockwise around the origin
angle radians and then shifted by having translate added to it.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
!*/
template <typename T>
const dlib::vector<T,2> operator() (
const dlib::vector<T,2>& p
) const;
/*!
ensures
- rotates p, then translates it and returns the result
!*/
};
// ----------------------------------------------------------------------------------------
class point_rotator
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an object that takes 2D points or vectors and
rotates them around the origin by a given angle.
!*/
public:
point_rotator (
const double& angle
);
/*!
ensures
- When (*this)(p) is invoked it will return a point P such that:
- P is the point p rotated counter-clockwise around the origin
angle radians.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
!*/
template <typename T>
const dlib::vector<T,2> operator() (
const dlib::vector<T,2>& p
) const;
/*!
ensures
- rotates p and returns the result
!*/
};
// ----------------------------------------------------------------------------------------
template <typename T>
const dlib::vector<T,2> rotate_point (
const dlib::vector<T,2> center,
const dlib::vector<T,2> p,
double angle
);
/*!
ensures
- returns a point P such that:
- P is the point p rotated counter-clockwise around the given
center point by angle radians.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
!*/
// ----------------------------------------------------------------------------------------
matrix<double,2,2> rotation_matrix (
double angle
);
/*!
ensures
- returns a rotation matrix which rotates points around the origin in a
counter-clockwise direction by angle radians.
(Note that this is counter clockwise with respect to the normal
coordinate system with positive y going up and positive x going
to the right)
Or in other words, this function returns a matrix M such that, given a
point P, M*P gives a point which is P rotated by angle radians around
the origin in a counter-clockwise direction.
!*/
// ----------------------------------------------------------------------------------------
}