Renamed the two parameters in the probabilistic_decision_function from a and b

to alpha and beta.  This is to avoid any possibility of a probabilistic_decision_function
being accidentally passed into templated code that is looking for the bias (the b element)
term of a decision_function.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403203
This commit is contained in:
Davis King 2009-09-10 23:22:47 +00:00
parent 6dca2475a6
commit 0c1117df40
2 changed files with 23 additions and 23 deletions

View File

@ -140,18 +140,18 @@ namespace dlib
typedef typename K::sample_type sample_type; typedef typename K::sample_type sample_type;
typedef typename K::mem_manager_type mem_manager_type; typedef typename K::mem_manager_type mem_manager_type;
scalar_type a; scalar_type alpha;
scalar_type b; scalar_type beta;
decision_function<K> decision_funct; decision_function<K> decision_funct;
probabilistic_decision_function ( probabilistic_decision_function (
) : a(0), b(0), decision_funct(decision_function<K>()) {} ) : alpha(0), beta(0), decision_funct(decision_function<K>()) {}
probabilistic_decision_function ( probabilistic_decision_function (
const probabilistic_decision_function& d const probabilistic_decision_function& d
) : ) :
a(d.a), alpha(d.alpha),
b(d.b), beta(d.beta),
decision_funct(d.decision_funct) decision_funct(d.decision_funct)
{} {}
@ -160,8 +160,8 @@ namespace dlib
const scalar_type b_, const scalar_type b_,
const decision_function<K>& decision_funct_ const decision_function<K>& decision_funct_
) : ) :
a(a_), alpha(a_),
b(b_), beta(b_),
decision_funct(decision_funct_) decision_funct(decision_funct_)
{} {}
@ -171,8 +171,8 @@ namespace dlib
{ {
if (this != &d) if (this != &d)
{ {
a = d.a; alpha = d.alpha;
b = d.b; beta = d.beta;
decision_funct = d.decision_funct; decision_funct = d.decision_funct;
} }
return *this; return *this;
@ -183,7 +183,7 @@ namespace dlib
) const ) const
{ {
scalar_type f = decision_funct(x); scalar_type f = decision_funct(x);
return 1/(1 + std::exp(a*f + b)); return 1/(1 + std::exp(alpha*f + beta));
} }
}; };
@ -197,8 +197,8 @@ namespace dlib
{ {
try try
{ {
serialize(item.a, out); serialize(item.alpha, out);
serialize(item.b, out); serialize(item.beta, out);
serialize(item.decision_funct, out); serialize(item.decision_funct, out);
} }
catch (serialization_error& e) catch (serialization_error& e)
@ -218,8 +218,8 @@ namespace dlib
typedef typename K::scalar_type scalar_type; typedef typename K::scalar_type scalar_type;
try try
{ {
deserialize(item.a, in); deserialize(item.alpha, in);
deserialize(item.b, in); deserialize(item.beta, in);
deserialize(item.decision_funct, in); deserialize(item.decision_funct, in);
} }
catch (serialization_error& e) catch (serialization_error& e)

View File

@ -143,16 +143,16 @@ namespace dlib
typedef typename K::sample_type sample_type; typedef typename K::sample_type sample_type;
typedef typename K::mem_manager_type mem_manager_type; typedef typename K::mem_manager_type mem_manager_type;
scalar_type a; scalar_type alpha;
scalar_type b; scalar_type beta;
decision_function<K> decision_funct; decision_function<K> decision_funct;
probabilistic_decision_function ( probabilistic_decision_function (
); );
/*! /*!
ensures ensures
- #a == 0 - #alpha == 0
- #b == 0 - #beta == 0
- #decision_function has its initial value - #decision_function has its initial value
!*/ !*/
@ -165,13 +165,13 @@ namespace dlib
!*/ !*/
probabilistic_decision_function ( probabilistic_decision_function (
const scalar_type a_, const scalar_type a,
const scalar_type b_, const scalar_type b,
const decision_function<K>& decision_funct_ const decision_function<K>& decision_funct_
) : a(a_), b(b_), decision_funct(decision_funct_) {} ) : alpha(a), beta(b), decision_funct(decision_funct_) {}
/*! /*!
ensures ensures
- populates the probabilistic decision function with the given a, b, - populates the probabilistic decision function with the given alpha, beta,
and decision_function. and decision_function.
!*/ !*/
@ -200,7 +200,7 @@ namespace dlib
// Now basically normalize the output so that it is a properly // Now basically normalize the output so that it is a properly
// conditioned probability of x being in the +1 class given // conditioned probability of x being in the +1 class given
// the output of the SVM. // the output of the SVM.
return 1/(1 + std::exp(a*f + b)); return 1/(1 + std::exp(alpha*f + beta));
} }
}; };