Replace boost::python with pybind11 (#1040)

* Replace boost::python with pybind11

* Replace add_python_module with pybind11_add_module

* Fix clang error on type-dependent expression
This commit is contained in:
Mischan Toosarani-Hausberger 2018-01-15 20:41:40 +01:00 committed by Davis E. King
parent c68bb4e785
commit 077a3b60e7
78 changed files with 15440 additions and 1215 deletions

View File

@ -1,221 +0,0 @@
# This is a CMake file that sets up the add_python_module() macro. This macro
# lets you easily make python modules that use dlib.
#
# The macro takes the module name as its first argument and then a list of
# source files to compile into the module. See ../tools/python/CMakeLists.txt
# for an example.
#
# It also sets up a macro called install_${module_name}_to() where
# ${module_name} is whatever you named your module. This install_*_to() macro
# takes a folder name and creates an install target that will copy the compiled
# python module to that folder when you run "make install". Note that the path
# given to install_*_to() is relative to your CMakeLists.txt file.
#
option(PYTHON3 "Build a Python3 compatible library rather than Python2." OFF)
# Avoid cmake warnings about changes in behavior of some Mac OS X path
# variable we don't care about.
if (POLICY CMP0042)
cmake_policy(SET CMP0042 NEW)
endif()
# Sometimes a computer will have multiple python verions installed. So in this
# block of code we find the one in the user's path and add its home folder into
# cmake's search path. That way it will use that version of python first.
if (PYTHON3)
find_program(PYTHON_EXECUTABLE python3)
endif()
if (NOT PYTHON_EXECUTABLE)
find_program(PYTHON_EXECUTABLE python)
endif()
# Resolve symbolic links, hopefully this will give us a path in the proper
# python home directory.
get_filename_component(PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} REALPATH)
# Pick out the parent directories
get_filename_component(PYTHON_PATH ${PYTHON_EXECUTABLE} PATH)
get_filename_component(PYTHON_PATH ${PYTHON_PATH} PATH)
list(APPEND CMAKE_PREFIX_PATH "${PYTHON_PATH}")
# To avoid dll hell, always link everything statically when compiling in
# visual studio. This way, the resulting library won't depend on a bunch
# of other dll files and can be safely copied to someone elese's computer
# and expected to run.
if (MSVC)
include(${CMAKE_CURRENT_LIST_DIR}/tell_visual_studio_to_use_static_runtime.cmake)
add_definitions(-DBOOST_PYTHON_STATIC_LIB)
SET(Boost_USE_STATIC_LIBS ON)
SET(Boost_USE_MULTITHREADED ON)
SET(Boost_USE_STATIC_RUNTIME ON)
endif()
set(Boost_NO_BOOST_CMAKE ON)
if (NOT WIN32)
set(BOOST_LIBRARYDIR ${BOOST_LIBRARYDIR} $ENV{BOOST_LIBRARYDIR}
/usr/lib/x86_64-linux-gnu/)
else()
link_directories($ENV{BOOST_LIBRARYDIR})
endif()
if (PYTHON3)
# On some systems the boost python3 module is called python-py34 so check
# for that one first.
FIND_PACKAGE(Boost 1.41.0 COMPONENTS python-py34 )
if (NOT Boost_FOUND)
FIND_PACKAGE(Boost 1.41.0 COMPONENTS python-py35)
endif()
if (NOT Boost_FOUND)
FIND_PACKAGE(Boost 1.41.0 COMPONENTS python3)
endif()
if (NOT Boost_FOUND)
FIND_PACKAGE(Boost 1.41.0 COMPONENTS python)
endif()
set(Python_ADDITIONAL_VERSIONS 3.5 3.6)
FIND_PACKAGE(PythonLibs 3.4)
else()
FIND_PACKAGE(Boost 1.41.0 COMPONENTS python)
FIND_PACKAGE(PythonLibs 2.6)
endif()
if (CMAKE_COMPILER_IS_GNUCXX)
# Just setting CMAKE_POSITION_INDEPENDENT_CODE should be enough to set
# -fPIC for GCC but sometimes it still doesn't get set, so make sure it
# does.
add_definitions("-fPIC")
set(CMAKE_POSITION_INDEPENDENT_CODE True)
else()
set(CMAKE_POSITION_INDEPENDENT_CODE True)
endif()
# include dlib so we can link against it
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/.. dlib_build)
if (USING_OLD_VISUAL_STUDIO_COMPILER)
message(FATAL_ERROR "You have to use a version of Visual Studio that supports C++11. As of December 2017, the only versions that have good enough C++11 support to compile the dlib Pyhton API is a fully updated Visual Studio 2015 or a fully updated Visual Studio 2017. Older versions of either of these compilers have bad C++11 support and will fail to compile the Python extension. ***SO UPDATE YOUR VISUAL STUDIO TO MAKE THIS ERROR GO AWAY***")
endif()
if (NOT Boost_FOUND)
message(STATUS " *****************************************************************************************************")
if (WIN32)
if (NOT DEFINED ENV{BOOST_ROOT} OR NOT DEFINED ENV{BOOST_LIBRARYDIR})
message(STATUS "The BOOST_ROOT and/or BOOST_LIBRARYDIR environment variables are not set. You need to set these ")
message(STATUS "variables so we know where boost is installed. So set these variables to something like this:")
message(STATUS " BOOST_ROOT=C:\\local\\boost_1_57_0 " )
message(STATUS " BOOST_LIBRARYDIR=C:\\local\\boost_1_57_0\\stage\\lib")
message(STATUS "The best way to set enviornment variables in Windows is to go to the start menu's search box,")
message(STATUS "type environment, and open the Environment Variables dialog. That lets you add more variables.")
message(STATUS "Add these variables to either user or system variables, it doesn't matter.")
message(STATUS "You might have to log out and log back in before the environment changes take effect.")
else()
message(STATUS "We couldn't find the right version of boost python. If you installed boost and you are still "
"getting this error then you might have installed a version of boost that was compiled with a different "
"version of visual studio than the one you are using. So you have to make sure that the version of "
"visual studio is the same version that was used to compile the copy of boost you are using.")
message(STATUS "")
message(STATUS " You will likely need to compile boost yourself rather than using one of the precompiled ")
message(STATUS " windows binaries. Do this by going to the folder tools\\build\\ within boost and running ")
message(STATUS " bootstrap.bat. Then run the command: ")
message(STATUS " b2 install")
message(STATUS " And then add the output bin folder to your PATH. Usually this is the C:\\boost-build-engine\\bin")
message(STATUS " folder. Finally, go to the boost root and run a command like this:")
message(STATUS " b2 -a --with-python address-model=64 toolset=msvc runtime-link=static")
message(STATUS " Note that you will need to set the address-model based on if you want a 32 or 64bit python library.")
message(STATUS " When it completes, set the BOOST_LIBRARYDIR environment variable equal to wherever b2 put the ")
message(STATUS " compiled libraries. You will also need to set BOOST_ROOT to the root folder of the boost install.")
message(STATUS " E.g. Something like this: ")
message(STATUS " set BOOST_ROOT=C:\\local\\boost_1_57_0 " )
message(STATUS " set BOOST_LIBRARYDIR=C:\\local\\boost_1_57_0\\stage\\lib")
message(STATUS "")
message(STATUS " Next, if you aren't using python setup.py then you will be invoking cmake to compile dlib. ")
message(STATUS " In this case you may have to use cmake's -G option to set the 64 vs. 32bit mode of visual studio. ")
message(STATUS " Also, if you want a Python3 library you will need to add -DPYTHON3=1. You do this with a statement like: ")
message(STATUS " cmake -G \"Visual Studio 14 2015 Win64\" -DPYTHON3=1 ..\\..\\tools\\python")
message(STATUS " Rather than:")
message(STATUS " cmake ..\\..\\tools\\python")
message(STATUS " Which will build a 32bit Python2 module by default on most systems.")
message(STATUS "")
endif()
else()
message(STATUS " To compile Boost.Python yourself download boost from boost.org and then go into the boost root folder")
message(STATUS " and run these commands: ")
message(STATUS " ./bootstrap.sh --with-libraries=python")
message(STATUS " ./b2")
message(STATUS " sudo ./b2 install")
endif()
message(STATUS " *****************************************************************************************************")
message(FATAL_ERROR " Boost python library not found. ")
endif()
message(STATUS "USING BOOST_LIBS: ${Boost_LIBRARIES}")
if (WIN32)
message(STATUS "USING PYTHON_LIBS: ${PYTHON_LIBRARIES}")
endif()
# We put the extra _ on the end of the name just so it's possible to
# have a module name of dlib and not get a conflict with the target named
# dlib in ../dlib/cmake. We use the target OUPUT_NAME property to ensure the
# output name is set to what the user asked for (i.e. no _).
macro(add_python_module module_name module_sources )
ADD_LIBRARY(${module_name}_ SHARED ${module_sources} ${ARGN} )
TARGET_LINK_LIBRARIES(${module_name}_ ${Boost_LIBRARIES} dlib::dlib)
target_include_directories(${module_name}_ SYSTEM PUBLIC "${Boost_INCLUDE_DIRS}")
if (PYTHON_INCLUDE_PATH)
target_include_directories(${module_name}_ SYSTEM PUBLIC "${PYTHON_INCLUDE_PATH}" )
else()
target_include_directories(${module_name}_ SYSTEM PUBLIC "${PYTHON_INCLUDE_DIRS}" )
endif()
if(WIN32 AND NOT CYGWIN)
TARGET_LINK_LIBRARIES(${module_name}_ ${PYTHON_LIBRARIES})
SET_TARGET_PROPERTIES( ${module_name}_
PROPERTIES
PREFIX ""
SUFFIX ".pyd"
OUTPUT_NAME ${module_name}
)
elseif(CYGWIN)
SET_TARGET_PROPERTIES( ${module_name}_
PROPERTIES
PREFIX ""
SUFFIX ".dll"
OUTPUT_NAME ${module_name}
)
elseif(APPLE)
SET_TARGET_PROPERTIES( ${module_name}_
PROPERTIES
LINK_FLAGS "-undefined dynamic_lookup"
PREFIX ""
SUFFIX ".so"
OUTPUT_NAME ${module_name}
)
else()
SET_TARGET_PROPERTIES( ${module_name}_
PROPERTIES
LINK_FLAGS "-shared"
PREFIX ""
SUFFIX ".so"
OUTPUT_NAME ${module_name}
)
endif()
macro(install_${module_name}_to path)
# Determine the path to our CMakeLists.txt file.
string(REGEX REPLACE "CMakeLists.txt$" "" base_path ${CMAKE_CURRENT_LIST_FILE})
INSTALL(TARGETS ${module_name}_
RUNTIME DESTINATION "${base_path}/${path}"
LIBRARY DESTINATION "${base_path}/${path}"
)
endmacro()
endmacro()

155
dlib/external/pybind11/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,155 @@
# CMakeLists.txt -- Build system for the pybind11 modules
#
# Copyright (c) 2015 Wenzel Jakob <wenzel@inf.ethz.ch>
#
# All rights reserved. Use of this source code is governed by a
# BSD-style license that can be found in the LICENSE file.
cmake_minimum_required(VERSION 2.8.12)
if (POLICY CMP0048)
# cmake warns if loaded from a min-3.0-required parent dir, so silence the warning:
cmake_policy(SET CMP0048 NEW)
endif()
# CMake versions < 3.4.0 do not support try_compile/pthread checks without C as active language.
if(CMAKE_VERSION VERSION_LESS 3.4.0)
project(pybind11)
else()
project(pybind11 CXX)
endif()
# Check if pybind11 is being used directly or via add_subdirectory
set(PYBIND11_MASTER_PROJECT OFF)
if (CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR)
set(PYBIND11_MASTER_PROJECT ON)
endif()
option(PYBIND11_INSTALL "Install pybind11 header files?" ${PYBIND11_MASTER_PROJECT})
option(PYBIND11_TEST "Build pybind11 test suite?" ${PYBIND11_MASTER_PROJECT})
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/tools")
include(pybind11Tools)
# Cache variables so pybind11_add_module can be used in parent projects
set(PYBIND11_INCLUDE_DIR "${CMAKE_CURRENT_LIST_DIR}/include" CACHE INTERNAL "")
set(PYTHON_INCLUDE_DIRS ${PYTHON_INCLUDE_DIRS} CACHE INTERNAL "")
set(PYTHON_LIBRARIES ${PYTHON_LIBRARIES} CACHE INTERNAL "")
set(PYTHON_MODULE_PREFIX ${PYTHON_MODULE_PREFIX} CACHE INTERNAL "")
set(PYTHON_MODULE_EXTENSION ${PYTHON_MODULE_EXTENSION} CACHE INTERNAL "")
# NB: when adding a header don't forget to also add it to setup.py
set(PYBIND11_HEADERS
include/pybind11/detail/class.h
include/pybind11/detail/common.h
include/pybind11/detail/descr.h
include/pybind11/detail/init.h
include/pybind11/detail/internals.h
include/pybind11/detail/typeid.h
include/pybind11/attr.h
include/pybind11/buffer_info.h
include/pybind11/cast.h
include/pybind11/chrono.h
include/pybind11/common.h
include/pybind11/complex.h
include/pybind11/options.h
include/pybind11/eigen.h
include/pybind11/embed.h
include/pybind11/eval.h
include/pybind11/functional.h
include/pybind11/numpy.h
include/pybind11/operators.h
include/pybind11/pybind11.h
include/pybind11/pytypes.h
include/pybind11/stl.h
include/pybind11/stl_bind.h
)
string(REPLACE "include/" "${CMAKE_CURRENT_SOURCE_DIR}/include/"
PYBIND11_HEADERS "${PYBIND11_HEADERS}")
if (PYBIND11_TEST)
add_subdirectory(tests)
endif()
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
# extract project version from source
file(STRINGS "${PYBIND11_INCLUDE_DIR}/pybind11/detail/common.h" pybind11_version_defines
REGEX "#define PYBIND11_VERSION_(MAJOR|MINOR|PATCH) ")
foreach(ver ${pybind11_version_defines})
if (ver MATCHES "#define PYBIND11_VERSION_(MAJOR|MINOR|PATCH) +([^ ]+)$")
set(PYBIND11_VERSION_${CMAKE_MATCH_1} "${CMAKE_MATCH_2}" CACHE INTERNAL "")
endif()
endforeach()
set(${PROJECT_NAME}_VERSION ${PYBIND11_VERSION_MAJOR}.${PYBIND11_VERSION_MINOR}.${PYBIND11_VERSION_PATCH})
message(STATUS "pybind11 v${${PROJECT_NAME}_VERSION}")
option (USE_PYTHON_INCLUDE_DIR "Install pybind11 headers in Python include directory instead of default installation prefix" OFF)
if (USE_PYTHON_INCLUDE_DIR)
file(RELATIVE_PATH CMAKE_INSTALL_INCLUDEDIR ${CMAKE_INSTALL_PREFIX} ${PYTHON_INCLUDE_DIRS})
endif()
if(NOT (CMAKE_VERSION VERSION_LESS 3.0)) # CMake >= 3.0
# Build an interface library target:
add_library(pybind11 INTERFACE)
add_library(pybind11::pybind11 ALIAS pybind11) # to match exported target
target_include_directories(pybind11 INTERFACE $<BUILD_INTERFACE:${PYBIND11_INCLUDE_DIR}>
$<BUILD_INTERFACE:${PYTHON_INCLUDE_DIRS}>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>)
target_compile_options(pybind11 INTERFACE $<BUILD_INTERFACE:${PYBIND11_CPP_STANDARD}>)
add_library(module INTERFACE)
add_library(pybind11::module ALIAS module)
if(NOT MSVC)
target_compile_options(module INTERFACE -fvisibility=hidden)
endif()
target_link_libraries(module INTERFACE pybind11::pybind11)
if(WIN32 OR CYGWIN)
target_link_libraries(module INTERFACE $<BUILD_INTERFACE:${PYTHON_LIBRARIES}>)
elseif(APPLE)
target_link_libraries(module INTERFACE "-undefined dynamic_lookup")
endif()
add_library(embed INTERFACE)
add_library(pybind11::embed ALIAS embed)
target_link_libraries(embed INTERFACE pybind11::pybind11 $<BUILD_INTERFACE:${PYTHON_LIBRARIES}>)
endif()
if (PYBIND11_INSTALL)
install(DIRECTORY ${PYBIND11_INCLUDE_DIR}/pybind11 DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
# GNUInstallDirs "DATADIR" wrong here; CMake search path wants "share".
set(PYBIND11_CMAKECONFIG_INSTALL_DIR "share/cmake/${PROJECT_NAME}" CACHE STRING "install path for pybind11Config.cmake")
configure_package_config_file(tools/${PROJECT_NAME}Config.cmake.in
"${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}Config.cmake"
INSTALL_DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR})
# Remove CMAKE_SIZEOF_VOID_P from ConfigVersion.cmake since the library does
# not depend on architecture specific settings or libraries.
set(_PYBIND11_CMAKE_SIZEOF_VOID_P ${CMAKE_SIZEOF_VOID_P})
unset(CMAKE_SIZEOF_VOID_P)
write_basic_package_version_file(${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}ConfigVersion.cmake
VERSION ${${PROJECT_NAME}_VERSION}
COMPATIBILITY AnyNewerVersion)
set(CMAKE_SIZEOF_VOID_P ${_PYBIND11_CMAKE_SIZEOF_VOID_P})
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}Config.cmake
${CMAKE_CURRENT_BINARY_DIR}/${PROJECT_NAME}ConfigVersion.cmake
tools/FindPythonLibsNew.cmake
tools/pybind11Tools.cmake
DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR})
if(NOT (CMAKE_VERSION VERSION_LESS 3.0))
if(NOT PYBIND11_EXPORT_NAME)
set(PYBIND11_EXPORT_NAME "${PROJECT_NAME}Targets")
endif()
install(TARGETS pybind11 module embed
EXPORT "${PYBIND11_EXPORT_NAME}")
if(PYBIND11_MASTER_PROJECT)
install(EXPORT "${PYBIND11_EXPORT_NAME}"
NAMESPACE "${PROJECT_NAME}::"
DESTINATION ${PYBIND11_CMAKECONFIG_INSTALL_DIR})
endif()
endif()
endif()

47
dlib/external/pybind11/CONTRIBUTING.md vendored Normal file
View File

@ -0,0 +1,47 @@
Thank you for your interest in this project! Please refer to the following
sections on how to contribute code and bug reports.
### Reporting bugs
At the moment, this project is run in the spare time of a single person
([Wenzel Jakob](http://rgl.epfl.ch/people/wjakob)) with very limited resources
for issue tracker tickets. Thus, before submitting a question or bug report,
please take a moment of your time and ensure that your issue isn't already
discussed in the project documentation provided at
[http://pybind11.readthedocs.org/en/latest](http://pybind11.readthedocs.org/en/latest).
Assuming that you have identified a previously unknown problem or an important
question, it's essential that you submit a self-contained and minimal piece of
code that reproduces the problem. In other words: no external dependencies,
isolate the function(s) that cause breakage, submit matched and complete C++
and Python snippets that can be easily compiled and run on my end.
## Pull requests
Contributions are submitted, reviewed, and accepted using Github pull requests.
Please refer to [this
article](https://help.github.com/articles/using-pull-requests) for details and
adhere to the following rules to make the process as smooth as possible:
* Make a new branch for every feature you're working on.
* Make small and clean pull requests that are easy to review but make sure they
do add value by themselves.
* Add tests for any new functionality and run the test suite (``make pytest``)
to ensure that no existing features break.
* This project has a strong focus on providing general solutions using a
minimal amount of code, thus small pull requests are greatly preferred.
### Licensing of contributions
pybind11 is provided under a BSD-style license that can be found in the
``LICENSE`` file. By using, distributing, or contributing to this project, you
agree to the terms and conditions of this license.
You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
("Enhancements") to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to the author of this software, without
imposing a separate written license agreement for such Enhancements, then you
hereby grant the following license: a non-exclusive, royalty-free perpetual
license to install, use, modify, prepare derivative works, incorporate into
other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.

29
dlib/external/pybind11/LICENSE vendored Normal file
View File

@ -0,0 +1,29 @@
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>, All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Please also refer to the file CONTRIBUTING.md, which clarifies licensing of
external contributions to this project including patches, pull requests, etc.

128
dlib/external/pybind11/README.md vendored Normal file
View File

@ -0,0 +1,128 @@
![pybind11 logo](https://github.com/pybind/pybind11/raw/master/docs/pybind11-logo.png)
# pybind11 — Seamless operability between C++11 and Python
[![Documentation Status](https://readthedocs.org/projects/pybind11/badge/?version=master)](http://pybind11.readthedocs.org/en/master/?badge=master)
[![Documentation Status](https://readthedocs.org/projects/pybind11/badge/?version=stable)](http://pybind11.readthedocs.org/en/stable/?badge=stable)
[![Gitter chat](https://img.shields.io/gitter/room/gitterHQ/gitter.svg)](https://gitter.im/pybind/Lobby)
[![Build Status](https://travis-ci.org/pybind/pybind11.svg?branch=master)](https://travis-ci.org/pybind/pybind11)
[![Build status](https://ci.appveyor.com/api/projects/status/riaj54pn4h08xy40?svg=true)](https://ci.appveyor.com/project/wjakob/pybind11)
**pybind11** is a lightweight header-only library that exposes C++ types in Python
and vice versa, mainly to create Python bindings of existing C++ code. Its
goals and syntax are similar to the excellent
[Boost.Python](http://www.boost.org/doc/libs/1_58_0/libs/python/doc/) library
by David Abrahams: to minimize boilerplate code in traditional extension
modules by inferring type information using compile-time introspection.
The main issue with Boost.Python—and the reason for creating such a similar
project—is Boost. Boost is an enormously large and complex suite of utility
libraries that works with almost every C++ compiler in existence. This
compatibility has its cost: arcane template tricks and workarounds are
necessary to support the oldest and buggiest of compiler specimens. Now that
C++11-compatible compilers are widely available, this heavy machinery has
become an excessively large and unnecessary dependency.
Think of this library as a tiny self-contained version of Boost.Python with
everything stripped away that isn't relevant for binding generation. Without
comments, the core header files only require ~4K lines of code and depend on
Python (2.7 or 3.x, or PyPy2.7 >= 5.7) and the C++ standard library. This
compact implementation was possible thanks to some of the new C++11 language
features (specifically: tuples, lambda functions and variadic templates). Since
its creation, this library has grown beyond Boost.Python in many ways, leading
to dramatically simpler binding code in many common situations.
Tutorial and reference documentation is provided at
[http://pybind11.readthedocs.org/en/master](http://pybind11.readthedocs.org/en/master).
A PDF version of the manual is available
[here](https://media.readthedocs.org/pdf/pybind11/master/pybind11.pdf).
## Core features
pybind11 can map the following core C++ features to Python
- Functions accepting and returning custom data structures per value, reference, or pointer
- Instance methods and static methods
- Overloaded functions
- Instance attributes and static attributes
- Arbitrary exception types
- Enumerations
- Callbacks
- Iterators and ranges
- Custom operators
- Single and multiple inheritance
- STL data structures
- Iterators and ranges
- Smart pointers with reference counting like ``std::shared_ptr``
- Internal references with correct reference counting
- C++ classes with virtual (and pure virtual) methods can be extended in Python
## Goodies
In addition to the core functionality, pybind11 provides some extra goodies:
- Python 2.7, 3.x, and PyPy (PyPy2.7 >= 5.7) are supported with an
implementation-agnostic interface.
- It is possible to bind C++11 lambda functions with captured variables. The
lambda capture data is stored inside the resulting Python function object.
- pybind11 uses C++11 move constructors and move assignment operators whenever
possible to efficiently transfer custom data types.
- It's easy to expose the internal storage of custom data types through
Pythons' buffer protocols. This is handy e.g. for fast conversion between
C++ matrix classes like Eigen and NumPy without expensive copy operations.
- pybind11 can automatically vectorize functions so that they are transparently
applied to all entries of one or more NumPy array arguments.
- Python's slice-based access and assignment operations can be supported with
just a few lines of code.
- Everything is contained in just a few header files; there is no need to link
against any additional libraries.
- Binaries are generally smaller by a factor of at least 2 compared to
equivalent bindings generated by Boost.Python. A recent pybind11 conversion
of PyRosetta, an enormous Boost.Python binding project,
[reported](http://graylab.jhu.edu/RosettaCon2016/PyRosetta-4.pdf) a binary
size reduction of **5.4x** and compile time reduction by **5.8x**.
- Function signatures are precomputed at compile time (using ``constexpr``),
leading to smaller binaries.
- With little extra effort, C++ types can be pickled and unpickled similar to
regular Python objects.
## Supported compilers
1. Clang/LLVM 3.3 or newer (for Apple Xcode's clang, this is 5.0.0 or newer)
2. GCC 4.8 or newer
3. Microsoft Visual Studio 2015 Update 3 or newer
4. Intel C++ compiler 16 or newer (15 with a [workaround](https://github.com/pybind/pybind11/issues/276))
5. Cygwin/GCC (tested on 2.5.1)
## About
This project was created by [Wenzel Jakob](http://rgl.epfl.ch/people/wjakob).
Significant features and/or improvements to the code were contributed by
Jonas Adler,
Sylvain Corlay,
Trent Houliston,
Axel Huebl,
@hulucc,
Sergey Lyskov
Johan Mabille,
Tomasz Miąsko,
Dean Moldovan,
Ben Pritchard,
Jason Rhinelander,
Boris Schäling,
Pim Schellart,
Ivan Smirnov, and
Patrick Stewart.
### License
pybind11 is provided under a BSD-style license that can be found in the
``LICENSE`` file. By using, distributing, or contributing to this project,
you agree to the terms and conditions of this license.

View File

@ -0,0 +1,489 @@
/*
pybind11/attr.h: Infrastructure for processing custom
type and function attributes
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "cast.h"
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
/// \addtogroup annotations
/// @{
/// Annotation for methods
struct is_method { handle class_; is_method(const handle &c) : class_(c) { } };
/// Annotation for operators
struct is_operator { };
/// Annotation for parent scope
struct scope { handle value; scope(const handle &s) : value(s) { } };
/// Annotation for documentation
struct doc { const char *value; doc(const char *value) : value(value) { } };
/// Annotation for function names
struct name { const char *value; name(const char *value) : value(value) { } };
/// Annotation indicating that a function is an overload associated with a given "sibling"
struct sibling { handle value; sibling(const handle &value) : value(value.ptr()) { } };
/// Annotation indicating that a class derives from another given type
template <typename T> struct base {
PYBIND11_DEPRECATED("base<T>() was deprecated in favor of specifying 'T' as a template argument to class_")
base() { }
};
/// Keep patient alive while nurse lives
template <size_t Nurse, size_t Patient> struct keep_alive { };
/// Annotation indicating that a class is involved in a multiple inheritance relationship
struct multiple_inheritance { };
/// Annotation which enables dynamic attributes, i.e. adds `__dict__` to a class
struct dynamic_attr { };
/// Annotation which enables the buffer protocol for a type
struct buffer_protocol { };
/// Annotation which requests that a special metaclass is created for a type
struct metaclass {
handle value;
PYBIND11_DEPRECATED("py::metaclass() is no longer required. It's turned on by default now.")
metaclass() {}
/// Override pybind11's default metaclass
explicit metaclass(handle value) : value(value) { }
};
/// Annotation that marks a class as local to the module:
struct module_local { const bool value; constexpr module_local(bool v = true) : value(v) { } };
/// Annotation to mark enums as an arithmetic type
struct arithmetic { };
/** \rst
A call policy which places one or more guard variables (``Ts...``) around the function call.
For example, this definition:
.. code-block:: cpp
m.def("foo", foo, py::call_guard<T>());
is equivalent to the following pseudocode:
.. code-block:: cpp
m.def("foo", [](args...) {
T scope_guard;
return foo(args...); // forwarded arguments
});
\endrst */
template <typename... Ts> struct call_guard;
template <> struct call_guard<> { using type = detail::void_type; };
template <typename T>
struct call_guard<T> {
static_assert(std::is_default_constructible<T>::value,
"The guard type must be default constructible");
using type = T;
};
template <typename T, typename... Ts>
struct call_guard<T, Ts...> {
struct type {
T guard{}; // Compose multiple guard types with left-to-right default-constructor order
typename call_guard<Ts...>::type next{};
};
};
/// @} annotations
NAMESPACE_BEGIN(detail)
/* Forward declarations */
enum op_id : int;
enum op_type : int;
struct undefined_t;
template <op_id id, op_type ot, typename L = undefined_t, typename R = undefined_t> struct op_;
inline void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret);
/// Internal data structure which holds metadata about a keyword argument
struct argument_record {
const char *name; ///< Argument name
const char *descr; ///< Human-readable version of the argument value
handle value; ///< Associated Python object
bool convert : 1; ///< True if the argument is allowed to convert when loading
bool none : 1; ///< True if None is allowed when loading
argument_record(const char *name, const char *descr, handle value, bool convert, bool none)
: name(name), descr(descr), value(value), convert(convert), none(none) { }
};
/// Internal data structure which holds metadata about a bound function (signature, overloads, etc.)
struct function_record {
function_record()
: is_constructor(false), is_new_style_constructor(false), is_stateless(false),
is_operator(false), has_args(false), has_kwargs(false), is_method(false) { }
/// Function name
char *name = nullptr; /* why no C++ strings? They generate heavier code.. */
// User-specified documentation string
char *doc = nullptr;
/// Human-readable version of the function signature
char *signature = nullptr;
/// List of registered keyword arguments
std::vector<argument_record> args;
/// Pointer to lambda function which converts arguments and performs the actual call
handle (*impl) (function_call &) = nullptr;
/// Storage for the wrapped function pointer and captured data, if any
void *data[3] = { };
/// Pointer to custom destructor for 'data' (if needed)
void (*free_data) (function_record *ptr) = nullptr;
/// Return value policy associated with this function
return_value_policy policy = return_value_policy::automatic;
/// True if name == '__init__'
bool is_constructor : 1;
/// True if this is a new-style `__init__` defined in `detail/init.h`
bool is_new_style_constructor : 1;
/// True if this is a stateless function pointer
bool is_stateless : 1;
/// True if this is an operator (__add__), etc.
bool is_operator : 1;
/// True if the function has a '*args' argument
bool has_args : 1;
/// True if the function has a '**kwargs' argument
bool has_kwargs : 1;
/// True if this is a method
bool is_method : 1;
/// Number of arguments (including py::args and/or py::kwargs, if present)
std::uint16_t nargs;
/// Python method object
PyMethodDef *def = nullptr;
/// Python handle to the parent scope (a class or a module)
handle scope;
/// Python handle to the sibling function representing an overload chain
handle sibling;
/// Pointer to next overload
function_record *next = nullptr;
};
/// Special data structure which (temporarily) holds metadata about a bound class
struct type_record {
PYBIND11_NOINLINE type_record()
: multiple_inheritance(false), dynamic_attr(false), buffer_protocol(false), module_local(false) { }
/// Handle to the parent scope
handle scope;
/// Name of the class
const char *name = nullptr;
// Pointer to RTTI type_info data structure
const std::type_info *type = nullptr;
/// How large is the underlying C++ type?
size_t type_size = 0;
/// How large is the type's holder?
size_t holder_size = 0;
/// The global operator new can be overridden with a class-specific variant
void *(*operator_new)(size_t) = ::operator new;
/// Function pointer to class_<..>::init_instance
void (*init_instance)(instance *, const void *) = nullptr;
/// Function pointer to class_<..>::dealloc
void (*dealloc)(detail::value_and_holder &) = nullptr;
/// List of base classes of the newly created type
list bases;
/// Optional docstring
const char *doc = nullptr;
/// Custom metaclass (optional)
handle metaclass;
/// Multiple inheritance marker
bool multiple_inheritance : 1;
/// Does the class manage a __dict__?
bool dynamic_attr : 1;
/// Does the class implement the buffer protocol?
bool buffer_protocol : 1;
/// Is the default (unique_ptr) holder type used?
bool default_holder : 1;
/// Is the class definition local to the module shared object?
bool module_local : 1;
PYBIND11_NOINLINE void add_base(const std::type_info &base, void *(*caster)(void *)) {
auto base_info = detail::get_type_info(base, false);
if (!base_info) {
std::string tname(base.name());
detail::clean_type_id(tname);
pybind11_fail("generic_type: type \"" + std::string(name) +
"\" referenced unknown base type \"" + tname + "\"");
}
if (default_holder != base_info->default_holder) {
std::string tname(base.name());
detail::clean_type_id(tname);
pybind11_fail("generic_type: type \"" + std::string(name) + "\" " +
(default_holder ? "does not have" : "has") +
" a non-default holder type while its base \"" + tname + "\" " +
(base_info->default_holder ? "does not" : "does"));
}
bases.append((PyObject *) base_info->type);
if (base_info->type->tp_dictoffset != 0)
dynamic_attr = true;
if (caster)
base_info->implicit_casts.emplace_back(type, caster);
}
};
inline function_call::function_call(function_record &f, handle p) :
func(f), parent(p) {
args.reserve(f.nargs);
args_convert.reserve(f.nargs);
}
/// Tag for a new-style `__init__` defined in `detail/init.h`
struct is_new_style_constructor { };
/**
* Partial template specializations to process custom attributes provided to
* cpp_function_ and class_. These are either used to initialize the respective
* fields in the type_record and function_record data structures or executed at
* runtime to deal with custom call policies (e.g. keep_alive).
*/
template <typename T, typename SFINAE = void> struct process_attribute;
template <typename T> struct process_attribute_default {
/// Default implementation: do nothing
static void init(const T &, function_record *) { }
static void init(const T &, type_record *) { }
static void precall(function_call &) { }
static void postcall(function_call &, handle) { }
};
/// Process an attribute specifying the function's name
template <> struct process_attribute<name> : process_attribute_default<name> {
static void init(const name &n, function_record *r) { r->name = const_cast<char *>(n.value); }
};
/// Process an attribute specifying the function's docstring
template <> struct process_attribute<doc> : process_attribute_default<doc> {
static void init(const doc &n, function_record *r) { r->doc = const_cast<char *>(n.value); }
};
/// Process an attribute specifying the function's docstring (provided as a C-style string)
template <> struct process_attribute<const char *> : process_attribute_default<const char *> {
static void init(const char *d, function_record *r) { r->doc = const_cast<char *>(d); }
static void init(const char *d, type_record *r) { r->doc = const_cast<char *>(d); }
};
template <> struct process_attribute<char *> : process_attribute<const char *> { };
/// Process an attribute indicating the function's return value policy
template <> struct process_attribute<return_value_policy> : process_attribute_default<return_value_policy> {
static void init(const return_value_policy &p, function_record *r) { r->policy = p; }
};
/// Process an attribute which indicates that this is an overloaded function associated with a given sibling
template <> struct process_attribute<sibling> : process_attribute_default<sibling> {
static void init(const sibling &s, function_record *r) { r->sibling = s.value; }
};
/// Process an attribute which indicates that this function is a method
template <> struct process_attribute<is_method> : process_attribute_default<is_method> {
static void init(const is_method &s, function_record *r) { r->is_method = true; r->scope = s.class_; }
};
/// Process an attribute which indicates the parent scope of a method
template <> struct process_attribute<scope> : process_attribute_default<scope> {
static void init(const scope &s, function_record *r) { r->scope = s.value; }
};
/// Process an attribute which indicates that this function is an operator
template <> struct process_attribute<is_operator> : process_attribute_default<is_operator> {
static void init(const is_operator &, function_record *r) { r->is_operator = true; }
};
template <> struct process_attribute<is_new_style_constructor> : process_attribute_default<is_new_style_constructor> {
static void init(const is_new_style_constructor &, function_record *r) { r->is_new_style_constructor = true; }
};
/// Process a keyword argument attribute (*without* a default value)
template <> struct process_attribute<arg> : process_attribute_default<arg> {
static void init(const arg &a, function_record *r) {
if (r->is_method && r->args.empty())
r->args.emplace_back("self", nullptr, handle(), true /*convert*/, false /*none not allowed*/);
r->args.emplace_back(a.name, nullptr, handle(), !a.flag_noconvert, a.flag_none);
}
};
/// Process a keyword argument attribute (*with* a default value)
template <> struct process_attribute<arg_v> : process_attribute_default<arg_v> {
static void init(const arg_v &a, function_record *r) {
if (r->is_method && r->args.empty())
r->args.emplace_back("self", nullptr /*descr*/, handle() /*parent*/, true /*convert*/, false /*none not allowed*/);
if (!a.value) {
#if !defined(NDEBUG)
std::string descr("'");
if (a.name) descr += std::string(a.name) + ": ";
descr += a.type + "'";
if (r->is_method) {
if (r->name)
descr += " in method '" + (std::string) str(r->scope) + "." + (std::string) r->name + "'";
else
descr += " in method of '" + (std::string) str(r->scope) + "'";
} else if (r->name) {
descr += " in function '" + (std::string) r->name + "'";
}
pybind11_fail("arg(): could not convert default argument "
+ descr + " into a Python object (type not registered yet?)");
#else
pybind11_fail("arg(): could not convert default argument "
"into a Python object (type not registered yet?). "
"Compile in debug mode for more information.");
#endif
}
r->args.emplace_back(a.name, a.descr, a.value.inc_ref(), !a.flag_noconvert, a.flag_none);
}
};
/// Process a parent class attribute. Single inheritance only (class_ itself already guarantees that)
template <typename T>
struct process_attribute<T, enable_if_t<is_pyobject<T>::value>> : process_attribute_default<handle> {
static void init(const handle &h, type_record *r) { r->bases.append(h); }
};
/// Process a parent class attribute (deprecated, does not support multiple inheritance)
template <typename T>
struct process_attribute<base<T>> : process_attribute_default<base<T>> {
static void init(const base<T> &, type_record *r) { r->add_base(typeid(T), nullptr); }
};
/// Process a multiple inheritance attribute
template <>
struct process_attribute<multiple_inheritance> : process_attribute_default<multiple_inheritance> {
static void init(const multiple_inheritance &, type_record *r) { r->multiple_inheritance = true; }
};
template <>
struct process_attribute<dynamic_attr> : process_attribute_default<dynamic_attr> {
static void init(const dynamic_attr &, type_record *r) { r->dynamic_attr = true; }
};
template <>
struct process_attribute<buffer_protocol> : process_attribute_default<buffer_protocol> {
static void init(const buffer_protocol &, type_record *r) { r->buffer_protocol = true; }
};
template <>
struct process_attribute<metaclass> : process_attribute_default<metaclass> {
static void init(const metaclass &m, type_record *r) { r->metaclass = m.value; }
};
template <>
struct process_attribute<module_local> : process_attribute_default<module_local> {
static void init(const module_local &l, type_record *r) { r->module_local = l.value; }
};
/// Process an 'arithmetic' attribute for enums (does nothing here)
template <>
struct process_attribute<arithmetic> : process_attribute_default<arithmetic> {};
template <typename... Ts>
struct process_attribute<call_guard<Ts...>> : process_attribute_default<call_guard<Ts...>> { };
/**
* Process a keep_alive call policy -- invokes keep_alive_impl during the
* pre-call handler if both Nurse, Patient != 0 and use the post-call handler
* otherwise
*/
template <size_t Nurse, size_t Patient> struct process_attribute<keep_alive<Nurse, Patient>> : public process_attribute_default<keep_alive<Nurse, Patient>> {
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0>
static void precall(function_call &call) { keep_alive_impl(Nurse, Patient, call, handle()); }
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0>
static void postcall(function_call &, handle) { }
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0>
static void precall(function_call &) { }
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0>
static void postcall(function_call &call, handle ret) { keep_alive_impl(Nurse, Patient, call, ret); }
};
/// Recursively iterate over variadic template arguments
template <typename... Args> struct process_attributes {
static void init(const Args&... args, function_record *r) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::init(args, r), 0) ... };
ignore_unused(unused);
}
static void init(const Args&... args, type_record *r) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::init(args, r), 0) ... };
ignore_unused(unused);
}
static void precall(function_call &call) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::precall(call), 0) ... };
ignore_unused(unused);
}
static void postcall(function_call &call, handle fn_ret) {
int unused[] = { 0, (process_attribute<typename std::decay<Args>::type>::postcall(call, fn_ret), 0) ... };
ignore_unused(unused);
}
};
template <typename T>
using is_call_guard = is_instantiation<call_guard, T>;
/// Extract the ``type`` from the first `call_guard` in `Extras...` (or `void_type` if none found)
template <typename... Extra>
using extract_guard_t = typename exactly_one_t<is_call_guard, call_guard<>, Extra...>::type;
/// Check the number of named arguments at compile time
template <typename... Extra,
size_t named = constexpr_sum(std::is_base_of<arg, Extra>::value...),
size_t self = constexpr_sum(std::is_same<is_method, Extra>::value...)>
constexpr bool expected_num_args(size_t nargs, bool has_args, bool has_kwargs) {
return named == 0 || (self + named + has_args + has_kwargs) == nargs;
}
NAMESPACE_END(detail)
NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,108 @@
/*
pybind11/buffer_info.h: Python buffer object interface
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "detail/common.h"
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
/// Information record describing a Python buffer object
struct buffer_info {
void *ptr = nullptr; // Pointer to the underlying storage
ssize_t itemsize = 0; // Size of individual items in bytes
ssize_t size = 0; // Total number of entries
std::string format; // For homogeneous buffers, this should be set to format_descriptor<T>::format()
ssize_t ndim = 0; // Number of dimensions
std::vector<ssize_t> shape; // Shape of the tensor (1 entry per dimension)
std::vector<ssize_t> strides; // Number of entries between adjacent entries (for each per dimension)
buffer_info() { }
buffer_info(void *ptr, ssize_t itemsize, const std::string &format, ssize_t ndim,
detail::any_container<ssize_t> shape_in, detail::any_container<ssize_t> strides_in)
: ptr(ptr), itemsize(itemsize), size(1), format(format), ndim(ndim),
shape(std::move(shape_in)), strides(std::move(strides_in)) {
if (ndim != (ssize_t) shape.size() || ndim != (ssize_t) strides.size())
pybind11_fail("buffer_info: ndim doesn't match shape and/or strides length");
for (size_t i = 0; i < (size_t) ndim; ++i)
size *= shape[i];
}
template <typename T>
buffer_info(T *ptr, detail::any_container<ssize_t> shape_in, detail::any_container<ssize_t> strides_in)
: buffer_info(private_ctr_tag(), ptr, sizeof(T), format_descriptor<T>::format(), static_cast<ssize_t>(shape_in->size()), std::move(shape_in), std::move(strides_in)) { }
buffer_info(void *ptr, ssize_t itemsize, const std::string &format, ssize_t size)
: buffer_info(ptr, itemsize, format, 1, {size}, {itemsize}) { }
template <typename T>
buffer_info(T *ptr, ssize_t size)
: buffer_info(ptr, sizeof(T), format_descriptor<T>::format(), size) { }
explicit buffer_info(Py_buffer *view, bool ownview = true)
: buffer_info(view->buf, view->itemsize, view->format, view->ndim,
{view->shape, view->shape + view->ndim}, {view->strides, view->strides + view->ndim}) {
this->view = view;
this->ownview = ownview;
}
buffer_info(const buffer_info &) = delete;
buffer_info& operator=(const buffer_info &) = delete;
buffer_info(buffer_info &&other) {
(*this) = std::move(other);
}
buffer_info& operator=(buffer_info &&rhs) {
ptr = rhs.ptr;
itemsize = rhs.itemsize;
size = rhs.size;
format = std::move(rhs.format);
ndim = rhs.ndim;
shape = std::move(rhs.shape);
strides = std::move(rhs.strides);
std::swap(view, rhs.view);
std::swap(ownview, rhs.ownview);
return *this;
}
~buffer_info() {
if (view && ownview) { PyBuffer_Release(view); delete view; }
}
private:
struct private_ctr_tag { };
buffer_info(private_ctr_tag, void *ptr, ssize_t itemsize, const std::string &format, ssize_t ndim,
detail::any_container<ssize_t> &&shape_in, detail::any_container<ssize_t> &&strides_in)
: buffer_info(ptr, itemsize, format, ndim, std::move(shape_in), std::move(strides_in)) { }
Py_buffer *view = nullptr;
bool ownview = false;
};
NAMESPACE_BEGIN(detail)
template <typename T, typename SFINAE = void> struct compare_buffer_info {
static bool compare(const buffer_info& b) {
return b.format == format_descriptor<T>::format() && b.itemsize == (ssize_t) sizeof(T);
}
};
template <typename T> struct compare_buffer_info<T, detail::enable_if_t<std::is_integral<T>::value>> {
static bool compare(const buffer_info& b) {
return (size_t) b.itemsize == sizeof(T) && (b.format == format_descriptor<T>::value ||
((sizeof(T) == sizeof(long)) && b.format == (std::is_unsigned<T>::value ? "L" : "l")) ||
((sizeof(T) == sizeof(size_t)) && b.format == (std::is_unsigned<T>::value ? "N" : "n")));
}
};
NAMESPACE_END(detail)
NAMESPACE_END(PYBIND11_NAMESPACE)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,162 @@
/*
pybind11/chrono.h: Transparent conversion between std::chrono and python's datetime
Copyright (c) 2016 Trent Houliston <trent@houliston.me> and
Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <cmath>
#include <ctime>
#include <chrono>
#include <datetime.h>
// Backport the PyDateTime_DELTA functions from Python3.3 if required
#ifndef PyDateTime_DELTA_GET_DAYS
#define PyDateTime_DELTA_GET_DAYS(o) (((PyDateTime_Delta*)o)->days)
#endif
#ifndef PyDateTime_DELTA_GET_SECONDS
#define PyDateTime_DELTA_GET_SECONDS(o) (((PyDateTime_Delta*)o)->seconds)
#endif
#ifndef PyDateTime_DELTA_GET_MICROSECONDS
#define PyDateTime_DELTA_GET_MICROSECONDS(o) (((PyDateTime_Delta*)o)->microseconds)
#endif
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
template <typename type> class duration_caster {
public:
typedef typename type::rep rep;
typedef typename type::period period;
typedef std::chrono::duration<uint_fast32_t, std::ratio<86400>> days;
bool load(handle src, bool) {
using namespace std::chrono;
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
if (!src) return false;
// If invoked with datetime.delta object
if (PyDelta_Check(src.ptr())) {
value = type(duration_cast<duration<rep, period>>(
days(PyDateTime_DELTA_GET_DAYS(src.ptr()))
+ seconds(PyDateTime_DELTA_GET_SECONDS(src.ptr()))
+ microseconds(PyDateTime_DELTA_GET_MICROSECONDS(src.ptr()))));
return true;
}
// If invoked with a float we assume it is seconds and convert
else if (PyFloat_Check(src.ptr())) {
value = type(duration_cast<duration<rep, period>>(duration<double>(PyFloat_AsDouble(src.ptr()))));
return true;
}
else return false;
}
// If this is a duration just return it back
static const std::chrono::duration<rep, period>& get_duration(const std::chrono::duration<rep, period> &src) {
return src;
}
// If this is a time_point get the time_since_epoch
template <typename Clock> static std::chrono::duration<rep, period> get_duration(const std::chrono::time_point<Clock, std::chrono::duration<rep, period>> &src) {
return src.time_since_epoch();
}
static handle cast(const type &src, return_value_policy /* policy */, handle /* parent */) {
using namespace std::chrono;
// Use overloaded function to get our duration from our source
// Works out if it is a duration or time_point and get the duration
auto d = get_duration(src);
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
// Declare these special duration types so the conversions happen with the correct primitive types (int)
using dd_t = duration<int, std::ratio<86400>>;
using ss_t = duration<int, std::ratio<1>>;
using us_t = duration<int, std::micro>;
auto dd = duration_cast<dd_t>(d);
auto subd = d - dd;
auto ss = duration_cast<ss_t>(subd);
auto us = duration_cast<us_t>(subd - ss);
return PyDelta_FromDSU(dd.count(), ss.count(), us.count());
}
PYBIND11_TYPE_CASTER(type, _("datetime.timedelta"));
};
// This is for casting times on the system clock into datetime.datetime instances
template <typename Duration> class type_caster<std::chrono::time_point<std::chrono::system_clock, Duration>> {
public:
typedef std::chrono::time_point<std::chrono::system_clock, Duration> type;
bool load(handle src, bool) {
using namespace std::chrono;
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
if (!src) return false;
if (PyDateTime_Check(src.ptr())) {
std::tm cal;
cal.tm_sec = PyDateTime_DATE_GET_SECOND(src.ptr());
cal.tm_min = PyDateTime_DATE_GET_MINUTE(src.ptr());
cal.tm_hour = PyDateTime_DATE_GET_HOUR(src.ptr());
cal.tm_mday = PyDateTime_GET_DAY(src.ptr());
cal.tm_mon = PyDateTime_GET_MONTH(src.ptr()) - 1;
cal.tm_year = PyDateTime_GET_YEAR(src.ptr()) - 1900;
cal.tm_isdst = -1;
value = system_clock::from_time_t(std::mktime(&cal)) + microseconds(PyDateTime_DATE_GET_MICROSECOND(src.ptr()));
return true;
}
else return false;
}
static handle cast(const std::chrono::time_point<std::chrono::system_clock, Duration> &src, return_value_policy /* policy */, handle /* parent */) {
using namespace std::chrono;
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) { PyDateTime_IMPORT; }
std::time_t tt = system_clock::to_time_t(src);
// this function uses static memory so it's best to copy it out asap just in case
// otherwise other code that is using localtime may break this (not just python code)
std::tm localtime = *std::localtime(&tt);
// Declare these special duration types so the conversions happen with the correct primitive types (int)
using us_t = duration<int, std::micro>;
return PyDateTime_FromDateAndTime(localtime.tm_year + 1900,
localtime.tm_mon + 1,
localtime.tm_mday,
localtime.tm_hour,
localtime.tm_min,
localtime.tm_sec,
(duration_cast<us_t>(src.time_since_epoch() % seconds(1))).count());
}
PYBIND11_TYPE_CASTER(type, _("datetime.datetime"));
};
// Other clocks that are not the system clock are not measured as datetime.datetime objects
// since they are not measured on calendar time. So instead we just make them timedeltas
// Or if they have passed us a time as a float we convert that
template <typename Clock, typename Duration> class type_caster<std::chrono::time_point<Clock, Duration>>
: public duration_caster<std::chrono::time_point<Clock, Duration>> {
};
template <typename Rep, typename Period> class type_caster<std::chrono::duration<Rep, Period>>
: public duration_caster<std::chrono::duration<Rep, Period>> {
};
NAMESPACE_END(detail)
NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,2 @@
#include "detail/common.h"
#warning "Including 'common.h' is deprecated. It will be removed in v3.0. Use 'pybind11.h'."

View File

@ -0,0 +1,65 @@
/*
pybind11/complex.h: Complex number support
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <complex>
/// glibc defines I as a macro which breaks things, e.g., boost template names
#ifdef I
# undef I
#endif
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
template <typename T> struct format_descriptor<std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>> {
static constexpr const char c = format_descriptor<T>::c;
static constexpr const char value[3] = { 'Z', c, '\0' };
static std::string format() { return std::string(value); }
};
#ifndef PYBIND11_CPP17
template <typename T> constexpr const char format_descriptor<
std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>>::value[3];
#endif
NAMESPACE_BEGIN(detail)
template <typename T> struct is_fmt_numeric<std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>> {
static constexpr bool value = true;
static constexpr int index = is_fmt_numeric<T>::index + 3;
};
template <typename T> class type_caster<std::complex<T>> {
public:
bool load(handle src, bool convert) {
if (!src)
return false;
if (!convert && !PyComplex_Check(src.ptr()))
return false;
Py_complex result = PyComplex_AsCComplex(src.ptr());
if (result.real == -1.0 && PyErr_Occurred()) {
PyErr_Clear();
return false;
}
value = std::complex<T>((T) result.real, (T) result.imag);
return true;
}
static handle cast(const std::complex<T> &src, return_value_policy /* policy */, handle /* parent */) {
return PyComplex_FromDoubles((double) src.real(), (double) src.imag());
}
PYBIND11_TYPE_CASTER(std::complex<T>, _("complex"));
};
NAMESPACE_END(detail)
NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,622 @@
/*
pybind11/detail/class.h: Python C API implementation details for py::class_
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "../attr.h"
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
#if PY_VERSION_HEX >= 0x03030000
# define PYBIND11_BUILTIN_QUALNAME
# define PYBIND11_SET_OLDPY_QUALNAME(obj, nameobj)
#else
// In pre-3.3 Python, we still set __qualname__ so that we can produce reliable function type
// signatures; in 3.3+ this macro expands to nothing:
# define PYBIND11_SET_OLDPY_QUALNAME(obj, nameobj) setattr((PyObject *) obj, "__qualname__", nameobj)
#endif
inline PyTypeObject *type_incref(PyTypeObject *type) {
Py_INCREF(type);
return type;
}
#if !defined(PYPY_VERSION)
/// `pybind11_static_property.__get__()`: Always pass the class instead of the instance.
extern "C" inline PyObject *pybind11_static_get(PyObject *self, PyObject * /*ob*/, PyObject *cls) {
return PyProperty_Type.tp_descr_get(self, cls, cls);
}
/// `pybind11_static_property.__set__()`: Just like the above `__get__()`.
extern "C" inline int pybind11_static_set(PyObject *self, PyObject *obj, PyObject *value) {
PyObject *cls = PyType_Check(obj) ? obj : (PyObject *) Py_TYPE(obj);
return PyProperty_Type.tp_descr_set(self, cls, value);
}
/** A `static_property` is the same as a `property` but the `__get__()` and `__set__()`
methods are modified to always use the object type instead of a concrete instance.
Return value: New reference. */
inline PyTypeObject *make_static_property_type() {
constexpr auto *name = "pybind11_static_property";
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto heap_type = (PyHeapTypeObject *) PyType_Type.tp_alloc(&PyType_Type, 0);
if (!heap_type)
pybind11_fail("make_static_property_type(): error allocating type!");
heap_type->ht_name = name_obj.inc_ref().ptr();
#ifdef PYBIND11_BUILTIN_QUALNAME
heap_type->ht_qualname = name_obj.inc_ref().ptr();
#endif
auto type = &heap_type->ht_type;
type->tp_name = name;
type->tp_base = type_incref(&PyProperty_Type);
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->tp_descr_get = pybind11_static_get;
type->tp_descr_set = pybind11_static_set;
if (PyType_Ready(type) < 0)
pybind11_fail("make_static_property_type(): failure in PyType_Ready()!");
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
return type;
}
#else // PYPY
/** PyPy has some issues with the above C API, so we evaluate Python code instead.
This function will only be called once so performance isn't really a concern.
Return value: New reference. */
inline PyTypeObject *make_static_property_type() {
auto d = dict();
PyObject *result = PyRun_String(R"(\
class pybind11_static_property(property):
def __get__(self, obj, cls):
return property.__get__(self, cls, cls)
def __set__(self, obj, value):
cls = obj if isinstance(obj, type) else type(obj)
property.__set__(self, cls, value)
)", Py_file_input, d.ptr(), d.ptr()
);
if (result == nullptr)
throw error_already_set();
Py_DECREF(result);
return (PyTypeObject *) d["pybind11_static_property"].cast<object>().release().ptr();
}
#endif // PYPY
/** Types with static properties need to handle `Type.static_prop = x` in a specific way.
By default, Python replaces the `static_property` itself, but for wrapped C++ types
we need to call `static_property.__set__()` in order to propagate the new value to
the underlying C++ data structure. */
extern "C" inline int pybind11_meta_setattro(PyObject* obj, PyObject* name, PyObject* value) {
// Use `_PyType_Lookup()` instead of `PyObject_GetAttr()` in order to get the raw
// descriptor (`property`) instead of calling `tp_descr_get` (`property.__get__()`).
PyObject *descr = _PyType_Lookup((PyTypeObject *) obj, name);
// The following assignment combinations are possible:
// 1. `Type.static_prop = value` --> descr_set: `Type.static_prop.__set__(value)`
// 2. `Type.static_prop = other_static_prop` --> setattro: replace existing `static_prop`
// 3. `Type.regular_attribute = value` --> setattro: regular attribute assignment
const auto static_prop = (PyObject *) get_internals().static_property_type;
const auto call_descr_set = descr && PyObject_IsInstance(descr, static_prop)
&& !PyObject_IsInstance(value, static_prop);
if (call_descr_set) {
// Call `static_property.__set__()` instead of replacing the `static_property`.
#if !defined(PYPY_VERSION)
return Py_TYPE(descr)->tp_descr_set(descr, obj, value);
#else
if (PyObject *result = PyObject_CallMethod(descr, "__set__", "OO", obj, value)) {
Py_DECREF(result);
return 0;
} else {
return -1;
}
#endif
} else {
// Replace existing attribute.
return PyType_Type.tp_setattro(obj, name, value);
}
}
#if PY_MAJOR_VERSION >= 3
/**
* Python 3's PyInstanceMethod_Type hides itself via its tp_descr_get, which prevents aliasing
* methods via cls.attr("m2") = cls.attr("m1"): instead the tp_descr_get returns a plain function,
* when called on a class, or a PyMethod, when called on an instance. Override that behaviour here
* to do a special case bypass for PyInstanceMethod_Types.
*/
extern "C" inline PyObject *pybind11_meta_getattro(PyObject *obj, PyObject *name) {
PyObject *descr = _PyType_Lookup((PyTypeObject *) obj, name);
if (descr && PyInstanceMethod_Check(descr)) {
Py_INCREF(descr);
return descr;
}
else {
return PyType_Type.tp_getattro(obj, name);
}
}
#endif
/** This metaclass is assigned by default to all pybind11 types and is required in order
for static properties to function correctly. Users may override this using `py::metaclass`.
Return value: New reference. */
inline PyTypeObject* make_default_metaclass() {
constexpr auto *name = "pybind11_type";
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto heap_type = (PyHeapTypeObject *) PyType_Type.tp_alloc(&PyType_Type, 0);
if (!heap_type)
pybind11_fail("make_default_metaclass(): error allocating metaclass!");
heap_type->ht_name = name_obj.inc_ref().ptr();
#ifdef PYBIND11_BUILTIN_QUALNAME
heap_type->ht_qualname = name_obj.inc_ref().ptr();
#endif
auto type = &heap_type->ht_type;
type->tp_name = name;
type->tp_base = type_incref(&PyType_Type);
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->tp_setattro = pybind11_meta_setattro;
#if PY_MAJOR_VERSION >= 3
type->tp_getattro = pybind11_meta_getattro;
#endif
if (PyType_Ready(type) < 0)
pybind11_fail("make_default_metaclass(): failure in PyType_Ready()!");
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
return type;
}
/// For multiple inheritance types we need to recursively register/deregister base pointers for any
/// base classes with pointers that are difference from the instance value pointer so that we can
/// correctly recognize an offset base class pointer. This calls a function with any offset base ptrs.
inline void traverse_offset_bases(void *valueptr, const detail::type_info *tinfo, instance *self,
bool (*f)(void * /*parentptr*/, instance * /*self*/)) {
for (handle h : reinterpret_borrow<tuple>(tinfo->type->tp_bases)) {
if (auto parent_tinfo = get_type_info((PyTypeObject *) h.ptr())) {
for (auto &c : parent_tinfo->implicit_casts) {
if (c.first == tinfo->cpptype) {
auto *parentptr = c.second(valueptr);
if (parentptr != valueptr)
f(parentptr, self);
traverse_offset_bases(parentptr, parent_tinfo, self, f);
break;
}
}
}
}
}
inline bool register_instance_impl(void *ptr, instance *self) {
get_internals().registered_instances.emplace(ptr, self);
return true; // unused, but gives the same signature as the deregister func
}
inline bool deregister_instance_impl(void *ptr, instance *self) {
auto &registered_instances = get_internals().registered_instances;
auto range = registered_instances.equal_range(ptr);
for (auto it = range.first; it != range.second; ++it) {
if (Py_TYPE(self) == Py_TYPE(it->second)) {
registered_instances.erase(it);
return true;
}
}
return false;
}
inline void register_instance(instance *self, void *valptr, const type_info *tinfo) {
register_instance_impl(valptr, self);
if (!tinfo->simple_ancestors)
traverse_offset_bases(valptr, tinfo, self, register_instance_impl);
}
inline bool deregister_instance(instance *self, void *valptr, const type_info *tinfo) {
bool ret = deregister_instance_impl(valptr, self);
if (!tinfo->simple_ancestors)
traverse_offset_bases(valptr, tinfo, self, deregister_instance_impl);
return ret;
}
/// Instance creation function for all pybind11 types. It allocates the internal instance layout for
/// holding C++ objects and holders. Allocation is done lazily (the first time the instance is cast
/// to a reference or pointer), and initialization is done by an `__init__` function.
inline PyObject *make_new_instance(PyTypeObject *type) {
#if defined(PYPY_VERSION)
// PyPy gets tp_basicsize wrong (issue 2482) under multiple inheritance when the first inherited
// object is a a plain Python type (i.e. not derived from an extension type). Fix it.
ssize_t instance_size = static_cast<ssize_t>(sizeof(instance));
if (type->tp_basicsize < instance_size) {
type->tp_basicsize = instance_size;
}
#endif
PyObject *self = type->tp_alloc(type, 0);
auto inst = reinterpret_cast<instance *>(self);
// Allocate the value/holder internals:
inst->allocate_layout();
inst->owned = true;
return self;
}
/// Instance creation function for all pybind11 types. It only allocates space for the
/// C++ object, but doesn't call the constructor -- an `__init__` function must do that.
extern "C" inline PyObject *pybind11_object_new(PyTypeObject *type, PyObject *, PyObject *) {
return make_new_instance(type);
}
/// An `__init__` function constructs the C++ object. Users should provide at least one
/// of these using `py::init` or directly with `.def(__init__, ...)`. Otherwise, the
/// following default function will be used which simply throws an exception.
extern "C" inline int pybind11_object_init(PyObject *self, PyObject *, PyObject *) {
PyTypeObject *type = Py_TYPE(self);
std::string msg;
#if defined(PYPY_VERSION)
msg += handle((PyObject *) type).attr("__module__").cast<std::string>() + ".";
#endif
msg += type->tp_name;
msg += ": No constructor defined!";
PyErr_SetString(PyExc_TypeError, msg.c_str());
return -1;
}
inline void add_patient(PyObject *nurse, PyObject *patient) {
auto &internals = get_internals();
auto instance = reinterpret_cast<detail::instance *>(nurse);
instance->has_patients = true;
Py_INCREF(patient);
internals.patients[nurse].push_back(patient);
}
inline void clear_patients(PyObject *self) {
auto instance = reinterpret_cast<detail::instance *>(self);
auto &internals = get_internals();
auto pos = internals.patients.find(self);
assert(pos != internals.patients.end());
// Clearing the patients can cause more Python code to run, which
// can invalidate the iterator. Extract the vector of patients
// from the unordered_map first.
auto patients = std::move(pos->second);
internals.patients.erase(pos);
instance->has_patients = false;
for (PyObject *&patient : patients)
Py_CLEAR(patient);
}
/// Clears all internal data from the instance and removes it from registered instances in
/// preparation for deallocation.
inline void clear_instance(PyObject *self) {
auto instance = reinterpret_cast<detail::instance *>(self);
// Deallocate any values/holders, if present:
for (auto &v_h : values_and_holders(instance)) {
if (v_h) {
// We have to deregister before we call dealloc because, for virtual MI types, we still
// need to be able to get the parent pointers.
if (v_h.instance_registered() && !deregister_instance(instance, v_h.value_ptr(), v_h.type))
pybind11_fail("pybind11_object_dealloc(): Tried to deallocate unregistered instance!");
if (instance->owned || v_h.holder_constructed())
v_h.type->dealloc(v_h);
}
}
// Deallocate the value/holder layout internals:
instance->deallocate_layout();
if (instance->weakrefs)
PyObject_ClearWeakRefs(self);
PyObject **dict_ptr = _PyObject_GetDictPtr(self);
if (dict_ptr)
Py_CLEAR(*dict_ptr);
if (instance->has_patients)
clear_patients(self);
}
/// Instance destructor function for all pybind11 types. It calls `type_info.dealloc`
/// to destroy the C++ object itself, while the rest is Python bookkeeping.
extern "C" inline void pybind11_object_dealloc(PyObject *self) {
clear_instance(self);
auto type = Py_TYPE(self);
type->tp_free(self);
// `type->tp_dealloc != pybind11_object_dealloc` means that we're being called
// as part of a derived type's dealloc, in which case we're not allowed to decref
// the type here. For cross-module compatibility, we shouldn't compare directly
// with `pybind11_object_dealloc`, but with the common one stashed in internals.
auto pybind11_object_type = (PyTypeObject *) get_internals().instance_base;
if (type->tp_dealloc == pybind11_object_type->tp_dealloc)
Py_DECREF(type);
}
/** Create the type which can be used as a common base for all classes. This is
needed in order to satisfy Python's requirements for multiple inheritance.
Return value: New reference. */
inline PyObject *make_object_base_type(PyTypeObject *metaclass) {
constexpr auto *name = "pybind11_object";
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto heap_type = (PyHeapTypeObject *) metaclass->tp_alloc(metaclass, 0);
if (!heap_type)
pybind11_fail("make_object_base_type(): error allocating type!");
heap_type->ht_name = name_obj.inc_ref().ptr();
#ifdef PYBIND11_BUILTIN_QUALNAME
heap_type->ht_qualname = name_obj.inc_ref().ptr();
#endif
auto type = &heap_type->ht_type;
type->tp_name = name;
type->tp_base = type_incref(&PyBaseObject_Type);
type->tp_basicsize = static_cast<ssize_t>(sizeof(instance));
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->tp_new = pybind11_object_new;
type->tp_init = pybind11_object_init;
type->tp_dealloc = pybind11_object_dealloc;
/* Support weak references (needed for the keep_alive feature) */
type->tp_weaklistoffset = offsetof(instance, weakrefs);
if (PyType_Ready(type) < 0)
pybind11_fail("PyType_Ready failed in make_object_base_type():" + error_string());
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
assert(!PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC));
return (PyObject *) heap_type;
}
/// dynamic_attr: Support for `d = instance.__dict__`.
extern "C" inline PyObject *pybind11_get_dict(PyObject *self, void *) {
PyObject *&dict = *_PyObject_GetDictPtr(self);
if (!dict)
dict = PyDict_New();
Py_XINCREF(dict);
return dict;
}
/// dynamic_attr: Support for `instance.__dict__ = dict()`.
extern "C" inline int pybind11_set_dict(PyObject *self, PyObject *new_dict, void *) {
if (!PyDict_Check(new_dict)) {
PyErr_Format(PyExc_TypeError, "__dict__ must be set to a dictionary, not a '%.200s'",
Py_TYPE(new_dict)->tp_name);
return -1;
}
PyObject *&dict = *_PyObject_GetDictPtr(self);
Py_INCREF(new_dict);
Py_CLEAR(dict);
dict = new_dict;
return 0;
}
/// dynamic_attr: Allow the garbage collector to traverse the internal instance `__dict__`.
extern "C" inline int pybind11_traverse(PyObject *self, visitproc visit, void *arg) {
PyObject *&dict = *_PyObject_GetDictPtr(self);
Py_VISIT(dict);
return 0;
}
/// dynamic_attr: Allow the GC to clear the dictionary.
extern "C" inline int pybind11_clear(PyObject *self) {
PyObject *&dict = *_PyObject_GetDictPtr(self);
Py_CLEAR(dict);
return 0;
}
/// Give instances of this type a `__dict__` and opt into garbage collection.
inline void enable_dynamic_attributes(PyHeapTypeObject *heap_type) {
auto type = &heap_type->ht_type;
#if defined(PYPY_VERSION)
pybind11_fail(std::string(type->tp_name) + ": dynamic attributes are "
"currently not supported in "
"conjunction with PyPy!");
#endif
type->tp_flags |= Py_TPFLAGS_HAVE_GC;
type->tp_dictoffset = type->tp_basicsize; // place dict at the end
type->tp_basicsize += (ssize_t)sizeof(PyObject *); // and allocate enough space for it
type->tp_traverse = pybind11_traverse;
type->tp_clear = pybind11_clear;
static PyGetSetDef getset[] = {
{const_cast<char*>("__dict__"), pybind11_get_dict, pybind11_set_dict, nullptr, nullptr},
{nullptr, nullptr, nullptr, nullptr, nullptr}
};
type->tp_getset = getset;
}
/// buffer_protocol: Fill in the view as specified by flags.
extern "C" inline int pybind11_getbuffer(PyObject *obj, Py_buffer *view, int flags) {
// Look for a `get_buffer` implementation in this type's info or any bases (following MRO).
type_info *tinfo = nullptr;
for (auto type : reinterpret_borrow<tuple>(Py_TYPE(obj)->tp_mro)) {
tinfo = get_type_info((PyTypeObject *) type.ptr());
if (tinfo && tinfo->get_buffer)
break;
}
if (view == nullptr || obj == nullptr || !tinfo || !tinfo->get_buffer) {
if (view)
view->obj = nullptr;
PyErr_SetString(PyExc_BufferError, "pybind11_getbuffer(): Internal error");
return -1;
}
std::memset(view, 0, sizeof(Py_buffer));
buffer_info *info = tinfo->get_buffer(obj, tinfo->get_buffer_data);
view->obj = obj;
view->ndim = 1;
view->internal = info;
view->buf = info->ptr;
view->itemsize = info->itemsize;
view->len = view->itemsize;
for (auto s : info->shape)
view->len *= s;
if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT)
view->format = const_cast<char *>(info->format.c_str());
if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) {
view->ndim = (int) info->ndim;
view->strides = &info->strides[0];
view->shape = &info->shape[0];
}
Py_INCREF(view->obj);
return 0;
}
/// buffer_protocol: Release the resources of the buffer.
extern "C" inline void pybind11_releasebuffer(PyObject *, Py_buffer *view) {
delete (buffer_info *) view->internal;
}
/// Give this type a buffer interface.
inline void enable_buffer_protocol(PyHeapTypeObject *heap_type) {
heap_type->ht_type.tp_as_buffer = &heap_type->as_buffer;
#if PY_MAJOR_VERSION < 3
heap_type->ht_type.tp_flags |= Py_TPFLAGS_HAVE_NEWBUFFER;
#endif
heap_type->as_buffer.bf_getbuffer = pybind11_getbuffer;
heap_type->as_buffer.bf_releasebuffer = pybind11_releasebuffer;
}
/** Create a brand new Python type according to the `type_record` specification.
Return value: New reference. */
inline PyObject* make_new_python_type(const type_record &rec) {
auto name = reinterpret_steal<object>(PYBIND11_FROM_STRING(rec.name));
auto qualname = name;
if (rec.scope && !PyModule_Check(rec.scope.ptr()) && hasattr(rec.scope, "__qualname__")) {
#if PY_MAJOR_VERSION >= 3
qualname = reinterpret_steal<object>(
PyUnicode_FromFormat("%U.%U", rec.scope.attr("__qualname__").ptr(), name.ptr()));
#else
qualname = str(rec.scope.attr("__qualname__").cast<std::string>() + "." + rec.name);
#endif
}
object module;
if (rec.scope) {
if (hasattr(rec.scope, "__module__"))
module = rec.scope.attr("__module__");
else if (hasattr(rec.scope, "__name__"))
module = rec.scope.attr("__name__");
}
auto full_name = c_str(
#if !defined(PYPY_VERSION)
module ? str(module).cast<std::string>() + "." + rec.name :
#endif
rec.name);
char *tp_doc = nullptr;
if (rec.doc && options::show_user_defined_docstrings()) {
/* Allocate memory for docstring (using PyObject_MALLOC, since
Python will free this later on) */
size_t size = strlen(rec.doc) + 1;
tp_doc = (char *) PyObject_MALLOC(size);
memcpy((void *) tp_doc, rec.doc, size);
}
auto &internals = get_internals();
auto bases = tuple(rec.bases);
auto base = (bases.size() == 0) ? internals.instance_base
: bases[0].ptr();
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto metaclass = rec.metaclass.ptr() ? (PyTypeObject *) rec.metaclass.ptr()
: internals.default_metaclass;
auto heap_type = (PyHeapTypeObject *) metaclass->tp_alloc(metaclass, 0);
if (!heap_type)
pybind11_fail(std::string(rec.name) + ": Unable to create type object!");
heap_type->ht_name = name.release().ptr();
#ifdef PYBIND11_BUILTIN_QUALNAME
heap_type->ht_qualname = qualname.inc_ref().ptr();
#endif
auto type = &heap_type->ht_type;
type->tp_name = full_name;
type->tp_doc = tp_doc;
type->tp_base = type_incref((PyTypeObject *)base);
type->tp_basicsize = static_cast<ssize_t>(sizeof(instance));
if (bases.size() > 0)
type->tp_bases = bases.release().ptr();
/* Don't inherit base __init__ */
type->tp_init = pybind11_object_init;
/* Supported protocols */
type->tp_as_number = &heap_type->as_number;
type->tp_as_sequence = &heap_type->as_sequence;
type->tp_as_mapping = &heap_type->as_mapping;
/* Flags */
type->tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
#if PY_MAJOR_VERSION < 3
type->tp_flags |= Py_TPFLAGS_CHECKTYPES;
#endif
if (rec.dynamic_attr)
enable_dynamic_attributes(heap_type);
if (rec.buffer_protocol)
enable_buffer_protocol(heap_type);
if (PyType_Ready(type) < 0)
pybind11_fail(std::string(rec.name) + ": PyType_Ready failed (" + error_string() + ")!");
assert(rec.dynamic_attr ? PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC)
: !PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC));
/* Register type with the parent scope */
if (rec.scope)
setattr(rec.scope, rec.name, (PyObject *) type);
else
Py_INCREF(type); // Keep it alive forever (reference leak)
if (module) // Needed by pydoc
setattr((PyObject *) type, "__module__", module);
PYBIND11_SET_OLDPY_QUALNAME(type, qualname);
return (PyObject *) type;
}
NAMESPACE_END(detail)
NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,813 @@
/*
pybind11/detail/common.h -- Basic macros
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#if !defined(NAMESPACE_BEGIN)
# define NAMESPACE_BEGIN(name) namespace name {
#endif
#if !defined(NAMESPACE_END)
# define NAMESPACE_END(name) }
#endif
// Robust support for some features and loading modules compiled against different pybind versions
// requires forcing hidden visibility on pybind code, so we enforce this by setting the attribute on
// the main `pybind11` namespace.
#if !defined(PYBIND11_NAMESPACE)
# ifdef __GNUG__
# define PYBIND11_NAMESPACE pybind11 __attribute__((visibility("hidden")))
# else
# define PYBIND11_NAMESPACE pybind11
# endif
#endif
#if !defined(_MSC_VER) && !defined(__INTEL_COMPILER)
# if __cplusplus >= 201402L
# define PYBIND11_CPP14
# if __cplusplus > 201402L /* Temporary: should be updated to >= the final C++17 value once known */
# define PYBIND11_CPP17
# endif
# endif
#elif defined(_MSC_VER)
// MSVC sets _MSVC_LANG rather than __cplusplus (supposedly until the standard is fully implemented)
# if _MSVC_LANG >= 201402L
# define PYBIND11_CPP14
# if _MSVC_LANG > 201402L && _MSC_VER >= 1910
# define PYBIND11_CPP17
# endif
# endif
#endif
// Compiler version assertions
#if defined(__INTEL_COMPILER)
# if __INTEL_COMPILER < 1500
# error pybind11 requires Intel C++ compiler v15 or newer
# endif
#elif defined(__clang__) && !defined(__apple_build_version__)
# if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 3)
# error pybind11 requires clang 3.3 or newer
# endif
#elif defined(__clang__)
// Apple changes clang version macros to its Xcode version; the first Xcode release based on
// (upstream) clang 3.3 was Xcode 5:
# if __clang_major__ < 5
# error pybind11 requires Xcode/clang 5.0 or newer
# endif
#elif defined(__GNUG__)
# if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 8)
# error pybind11 requires gcc 4.8 or newer
# endif
#elif defined(_MSC_VER)
// Pybind hits various compiler bugs in 2015u2 and earlier, and also makes use of some stl features
// (e.g. std::negation) added in 2015u3:
# if _MSC_FULL_VER < 190024210
# error pybind11 requires MSVC 2015 update 3 or newer
# endif
#endif
#if !defined(PYBIND11_EXPORT)
# if defined(WIN32) || defined(_WIN32)
# define PYBIND11_EXPORT __declspec(dllexport)
# else
# define PYBIND11_EXPORT __attribute__ ((visibility("default")))
# endif
#endif
#if defined(_MSC_VER)
# define PYBIND11_NOINLINE __declspec(noinline)
#else
# define PYBIND11_NOINLINE __attribute__ ((noinline))
#endif
#if defined(PYBIND11_CPP14)
# define PYBIND11_DEPRECATED(reason) [[deprecated(reason)]]
#else
# define PYBIND11_DEPRECATED(reason) __attribute__((deprecated(reason)))
#endif
#define PYBIND11_VERSION_MAJOR 2
#define PYBIND11_VERSION_MINOR 3
#define PYBIND11_VERSION_PATCH dev0
/// Include Python header, disable linking to pythonX_d.lib on Windows in debug mode
#if defined(_MSC_VER)
# if (PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION < 4)
# define HAVE_ROUND 1
# endif
# pragma warning(push)
# pragma warning(disable: 4510 4610 4512 4005)
# if defined(_DEBUG)
# define PYBIND11_DEBUG_MARKER
# undef _DEBUG
# endif
#endif
#include <Python.h>
#include <frameobject.h>
#include <pythread.h>
#if defined(_WIN32) && (defined(min) || defined(max))
# error Macro clash with min and max -- define NOMINMAX when compiling your program on Windows
#endif
#if defined(isalnum)
# undef isalnum
# undef isalpha
# undef islower
# undef isspace
# undef isupper
# undef tolower
# undef toupper
#endif
#if defined(_MSC_VER)
# if defined(PYBIND11_DEBUG_MARKER)
# define _DEBUG
# undef PYBIND11_DEBUG_MARKER
# endif
# pragma warning(pop)
#endif
#include <cstddef>
#include <cstring>
#include <forward_list>
#include <vector>
#include <string>
#include <stdexcept>
#include <unordered_set>
#include <unordered_map>
#include <memory>
#include <typeindex>
#include <type_traits>
#if PY_MAJOR_VERSION >= 3 /// Compatibility macros for various Python versions
#define PYBIND11_INSTANCE_METHOD_NEW(ptr, class_) PyInstanceMethod_New(ptr)
#define PYBIND11_INSTANCE_METHOD_CHECK PyInstanceMethod_Check
#define PYBIND11_INSTANCE_METHOD_GET_FUNCTION PyInstanceMethod_GET_FUNCTION
#define PYBIND11_BYTES_CHECK PyBytes_Check
#define PYBIND11_BYTES_FROM_STRING PyBytes_FromString
#define PYBIND11_BYTES_FROM_STRING_AND_SIZE PyBytes_FromStringAndSize
#define PYBIND11_BYTES_AS_STRING_AND_SIZE PyBytes_AsStringAndSize
#define PYBIND11_BYTES_AS_STRING PyBytes_AsString
#define PYBIND11_BYTES_SIZE PyBytes_Size
#define PYBIND11_LONG_CHECK(o) PyLong_Check(o)
#define PYBIND11_LONG_AS_LONGLONG(o) PyLong_AsLongLong(o)
#define PYBIND11_LONG_FROM_SIGNED(o) PyLong_FromSsize_t((ssize_t) o)
#define PYBIND11_LONG_FROM_UNSIGNED(o) PyLong_FromSize_t((size_t) o)
#define PYBIND11_BYTES_NAME "bytes"
#define PYBIND11_STRING_NAME "str"
#define PYBIND11_SLICE_OBJECT PyObject
#define PYBIND11_FROM_STRING PyUnicode_FromString
#define PYBIND11_STR_TYPE ::pybind11::str
#define PYBIND11_BOOL_ATTR "__bool__"
#define PYBIND11_NB_BOOL(ptr) ((ptr)->nb_bool)
#define PYBIND11_PLUGIN_IMPL(name) \
extern "C" PYBIND11_EXPORT PyObject *PyInit_##name()
#else
#define PYBIND11_INSTANCE_METHOD_NEW(ptr, class_) PyMethod_New(ptr, nullptr, class_)
#define PYBIND11_INSTANCE_METHOD_CHECK PyMethod_Check
#define PYBIND11_INSTANCE_METHOD_GET_FUNCTION PyMethod_GET_FUNCTION
#define PYBIND11_BYTES_CHECK PyString_Check
#define PYBIND11_BYTES_FROM_STRING PyString_FromString
#define PYBIND11_BYTES_FROM_STRING_AND_SIZE PyString_FromStringAndSize
#define PYBIND11_BYTES_AS_STRING_AND_SIZE PyString_AsStringAndSize
#define PYBIND11_BYTES_AS_STRING PyString_AsString
#define PYBIND11_BYTES_SIZE PyString_Size
#define PYBIND11_LONG_CHECK(o) (PyInt_Check(o) || PyLong_Check(o))
#define PYBIND11_LONG_AS_LONGLONG(o) (PyInt_Check(o) ? (long long) PyLong_AsLong(o) : PyLong_AsLongLong(o))
#define PYBIND11_LONG_FROM_SIGNED(o) PyInt_FromSsize_t((ssize_t) o) // Returns long if needed.
#define PYBIND11_LONG_FROM_UNSIGNED(o) PyInt_FromSize_t((size_t) o) // Returns long if needed.
#define PYBIND11_BYTES_NAME "str"
#define PYBIND11_STRING_NAME "unicode"
#define PYBIND11_SLICE_OBJECT PySliceObject
#define PYBIND11_FROM_STRING PyString_FromString
#define PYBIND11_STR_TYPE ::pybind11::bytes
#define PYBIND11_BOOL_ATTR "__nonzero__"
#define PYBIND11_NB_BOOL(ptr) ((ptr)->nb_nonzero)
#define PYBIND11_PLUGIN_IMPL(name) \
static PyObject *pybind11_init_wrapper(); \
extern "C" PYBIND11_EXPORT void init##name() { \
(void)pybind11_init_wrapper(); \
} \
PyObject *pybind11_init_wrapper()
#endif
#if PY_VERSION_HEX >= 0x03050000 && PY_VERSION_HEX < 0x03050200
extern "C" {
struct _Py_atomic_address { void *value; };
PyAPI_DATA(_Py_atomic_address) _PyThreadState_Current;
}
#endif
#define PYBIND11_TRY_NEXT_OVERLOAD ((PyObject *) 1) // special failure return code
#define PYBIND11_STRINGIFY(x) #x
#define PYBIND11_TOSTRING(x) PYBIND11_STRINGIFY(x)
#define PYBIND11_CONCAT(first, second) first##second
/** \rst
***Deprecated in favor of PYBIND11_MODULE***
This macro creates the entry point that will be invoked when the Python interpreter
imports a plugin library. Please create a `module` in the function body and return
the pointer to its underlying Python object at the end.
.. code-block:: cpp
PYBIND11_PLUGIN(example) {
pybind11::module m("example", "pybind11 example plugin");
/// Set up bindings here
return m.ptr();
}
\endrst */
#define PYBIND11_PLUGIN(name) \
PYBIND11_DEPRECATED("PYBIND11_PLUGIN is deprecated, use PYBIND11_MODULE") \
static PyObject *pybind11_init(); \
PYBIND11_PLUGIN_IMPL(name) { \
int major, minor; \
if (sscanf(Py_GetVersion(), "%i.%i", &major, &minor) != 2) { \
PyErr_SetString(PyExc_ImportError, "Can't parse Python version."); \
return nullptr; \
} else if (major != PY_MAJOR_VERSION || minor != PY_MINOR_VERSION) { \
PyErr_Format(PyExc_ImportError, \
"Python version mismatch: module was compiled for " \
"version %i.%i, while the interpreter is running " \
"version %i.%i.", PY_MAJOR_VERSION, PY_MINOR_VERSION, \
major, minor); \
return nullptr; \
} \
try { \
return pybind11_init(); \
} catch (pybind11::error_already_set &e) { \
PyErr_SetString(PyExc_ImportError, e.what()); \
return nullptr; \
} catch (const std::exception &e) { \
PyErr_SetString(PyExc_ImportError, e.what()); \
return nullptr; \
} \
} \
PyObject *pybind11_init()
/** \rst
This macro creates the entry point that will be invoked when the Python interpreter
imports an extension module. The module name is given as the fist argument and it
should not be in quotes. The second macro argument defines a variable of type
`py::module` which can be used to initialize the module.
.. code-block:: cpp
PYBIND11_MODULE(example, m) {
m.doc() = "pybind11 example module";
// Add bindings here
m.def("foo", []() {
return "Hello, World!";
});
}
\endrst */
#define PYBIND11_MODULE(name, variable) \
static void PYBIND11_CONCAT(pybind11_init_, name)(pybind11::module &); \
PYBIND11_PLUGIN_IMPL(name) { \
int major, minor; \
if (sscanf(Py_GetVersion(), "%i.%i", &major, &minor) != 2) { \
PyErr_SetString(PyExc_ImportError, "Can't parse Python version."); \
return nullptr; \
} else if (major != PY_MAJOR_VERSION || minor != PY_MINOR_VERSION) { \
PyErr_Format(PyExc_ImportError, \
"Python version mismatch: module was compiled for " \
"version %i.%i, while the interpreter is running " \
"version %i.%i.", PY_MAJOR_VERSION, PY_MINOR_VERSION, \
major, minor); \
return nullptr; \
} \
auto m = pybind11::module(PYBIND11_TOSTRING(name)); \
try { \
PYBIND11_CONCAT(pybind11_init_, name)(m); \
return m.ptr(); \
} catch (pybind11::error_already_set &e) { \
PyErr_SetString(PyExc_ImportError, e.what()); \
return nullptr; \
} catch (const std::exception &e) { \
PyErr_SetString(PyExc_ImportError, e.what()); \
return nullptr; \
} \
} \
void PYBIND11_CONCAT(pybind11_init_, name)(pybind11::module &variable)
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
using ssize_t = Py_ssize_t;
using size_t = std::size_t;
/// Approach used to cast a previously unknown C++ instance into a Python object
enum class return_value_policy : uint8_t {
/** This is the default return value policy, which falls back to the policy
return_value_policy::take_ownership when the return value is a pointer.
Otherwise, it uses return_value::move or return_value::copy for rvalue
and lvalue references, respectively. See below for a description of what
all of these different policies do. */
automatic = 0,
/** As above, but use policy return_value_policy::reference when the return
value is a pointer. This is the default conversion policy for function
arguments when calling Python functions manually from C++ code (i.e. via
handle::operator()). You probably won't need to use this. */
automatic_reference,
/** Reference an existing object (i.e. do not create a new copy) and take
ownership. Python will call the destructor and delete operator when the
objects reference count reaches zero. Undefined behavior ensues when
the C++ side does the same.. */
take_ownership,
/** Create a new copy of the returned object, which will be owned by
Python. This policy is comparably safe because the lifetimes of the two
instances are decoupled. */
copy,
/** Use std::move to move the return value contents into a new instance
that will be owned by Python. This policy is comparably safe because the
lifetimes of the two instances (move source and destination) are
decoupled. */
move,
/** Reference an existing object, but do not take ownership. The C++ side
is responsible for managing the objects lifetime and deallocating it
when it is no longer used. Warning: undefined behavior will ensue when
the C++ side deletes an object that is still referenced and used by
Python. */
reference,
/** This policy only applies to methods and properties. It references the
object without taking ownership similar to the above
return_value_policy::reference policy. In contrast to that policy, the
function or propertys implicit this argument (called the parent) is
considered to be the the owner of the return value (the child).
pybind11 then couples the lifetime of the parent to the child via a
reference relationship that ensures that the parent cannot be garbage
collected while Python is still using the child. More advanced
variations of this scheme are also possible using combinations of
return_value_policy::reference and the keep_alive call policy */
reference_internal
};
NAMESPACE_BEGIN(detail)
inline static constexpr int log2(size_t n, int k = 0) { return (n <= 1) ? k : log2(n >> 1, k + 1); }
// Returns the size as a multiple of sizeof(void *), rounded up.
inline static constexpr size_t size_in_ptrs(size_t s) { return 1 + ((s - 1) >> log2(sizeof(void *))); }
/**
* The space to allocate for simple layout instance holders (see below) in multiple of the size of
* a pointer (e.g. 2 means 16 bytes on 64-bit architectures). The default is the minimum required
* to holder either a std::unique_ptr or std::shared_ptr (which is almost always
* sizeof(std::shared_ptr<T>)).
*/
constexpr size_t instance_simple_holder_in_ptrs() {
static_assert(sizeof(std::shared_ptr<int>) >= sizeof(std::unique_ptr<int>),
"pybind assumes std::shared_ptrs are at least as big as std::unique_ptrs");
return size_in_ptrs(sizeof(std::shared_ptr<int>));
}
// Forward declarations
struct type_info;
struct value_and_holder;
/// The 'instance' type which needs to be standard layout (need to be able to use 'offsetof')
struct instance {
PyObject_HEAD
/// Storage for pointers and holder; see simple_layout, below, for a description
union {
void *simple_value_holder[1 + instance_simple_holder_in_ptrs()];
struct {
void **values_and_holders;
uint8_t *status;
} nonsimple;
};
/// Weak references
PyObject *weakrefs;
/// If true, the pointer is owned which means we're free to manage it with a holder.
bool owned : 1;
/**
* An instance has two possible value/holder layouts.
*
* Simple layout (when this flag is true), means the `simple_value_holder` is set with a pointer
* and the holder object governing that pointer, i.e. [val1*][holder]. This layout is applied
* whenever there is no python-side multiple inheritance of bound C++ types *and* the type's
* holder will fit in the default space (which is large enough to hold either a std::unique_ptr
* or std::shared_ptr).
*
* Non-simple layout applies when using custom holders that require more space than `shared_ptr`
* (which is typically the size of two pointers), or when multiple inheritance is used on the
* python side. Non-simple layout allocates the required amount of memory to have multiple
* bound C++ classes as parents. Under this layout, `nonsimple.values_and_holders` is set to a
* pointer to allocated space of the required space to hold a sequence of value pointers and
* holders followed `status`, a set of bit flags (1 byte each), i.e.
* [val1*][holder1][val2*][holder2]...[bb...] where each [block] is rounded up to a multiple of
* `sizeof(void *)`. `nonsimple.status` is, for convenience, a pointer to the
* beginning of the [bb...] block (but not independently allocated).
*
* Status bits indicate whether the associated holder is constructed (&
* status_holder_constructed) and whether the value pointer is registered (&
* status_instance_registered) in `registered_instances`.
*/
bool simple_layout : 1;
/// For simple layout, tracks whether the holder has been constructed
bool simple_holder_constructed : 1;
/// For simple layout, tracks whether the instance is registered in `registered_instances`
bool simple_instance_registered : 1;
/// If true, get_internals().patients has an entry for this object
bool has_patients : 1;
/// Initializes all of the above type/values/holders data (but not the instance values themselves)
void allocate_layout();
/// Destroys/deallocates all of the above
void deallocate_layout();
/// Returns the value_and_holder wrapper for the given type (or the first, if `find_type`
/// omitted). Returns a default-constructed (with `.inst = nullptr`) object on failure if
/// `throw_if_missing` is false.
value_and_holder get_value_and_holder(const type_info *find_type = nullptr, bool throw_if_missing = true);
/// Bit values for the non-simple status flags
static constexpr uint8_t status_holder_constructed = 1;
static constexpr uint8_t status_instance_registered = 2;
};
static_assert(std::is_standard_layout<instance>::value, "Internal error: `pybind11::detail::instance` is not standard layout!");
/// from __cpp_future__ import (convenient aliases from C++14/17)
#if defined(PYBIND11_CPP14) && (!defined(_MSC_VER) || _MSC_VER >= 1910)
using std::enable_if_t;
using std::conditional_t;
using std::remove_cv_t;
using std::remove_reference_t;
#else
template <bool B, typename T = void> using enable_if_t = typename std::enable_if<B, T>::type;
template <bool B, typename T, typename F> using conditional_t = typename std::conditional<B, T, F>::type;
template <typename T> using remove_cv_t = typename std::remove_cv<T>::type;
template <typename T> using remove_reference_t = typename std::remove_reference<T>::type;
#endif
/// Index sequences
#if defined(PYBIND11_CPP14)
using std::index_sequence;
using std::make_index_sequence;
#else
template<size_t ...> struct index_sequence { };
template<size_t N, size_t ...S> struct make_index_sequence_impl : make_index_sequence_impl <N - 1, N - 1, S...> { };
template<size_t ...S> struct make_index_sequence_impl <0, S...> { typedef index_sequence<S...> type; };
template<size_t N> using make_index_sequence = typename make_index_sequence_impl<N>::type;
#endif
/// Make an index sequence of the indices of true arguments
template <typename ISeq, size_t, bool...> struct select_indices_impl { using type = ISeq; };
template <size_t... IPrev, size_t I, bool B, bool... Bs> struct select_indices_impl<index_sequence<IPrev...>, I, B, Bs...>
: select_indices_impl<conditional_t<B, index_sequence<IPrev..., I>, index_sequence<IPrev...>>, I + 1, Bs...> {};
template <bool... Bs> using select_indices = typename select_indices_impl<index_sequence<>, 0, Bs...>::type;
/// Backports of std::bool_constant and std::negation to accommodate older compilers
template <bool B> using bool_constant = std::integral_constant<bool, B>;
template <typename T> struct negation : bool_constant<!T::value> { };
template <typename...> struct void_t_impl { using type = void; };
template <typename... Ts> using void_t = typename void_t_impl<Ts...>::type;
/// Compile-time all/any/none of that check the boolean value of all template types
#ifdef __cpp_fold_expressions
template <class... Ts> using all_of = bool_constant<(Ts::value && ...)>;
template <class... Ts> using any_of = bool_constant<(Ts::value || ...)>;
#elif !defined(_MSC_VER)
template <bool...> struct bools {};
template <class... Ts> using all_of = std::is_same<
bools<Ts::value..., true>,
bools<true, Ts::value...>>;
template <class... Ts> using any_of = negation<all_of<negation<Ts>...>>;
#else
// MSVC has trouble with the above, but supports std::conjunction, which we can use instead (albeit
// at a slight loss of compilation efficiency).
template <class... Ts> using all_of = std::conjunction<Ts...>;
template <class... Ts> using any_of = std::disjunction<Ts...>;
#endif
template <class... Ts> using none_of = negation<any_of<Ts...>>;
template <class T, template<class> class... Predicates> using satisfies_all_of = all_of<Predicates<T>...>;
template <class T, template<class> class... Predicates> using satisfies_any_of = any_of<Predicates<T>...>;
template <class T, template<class> class... Predicates> using satisfies_none_of = none_of<Predicates<T>...>;
/// Strip the class from a method type
template <typename T> struct remove_class { };
template <typename C, typename R, typename... A> struct remove_class<R (C::*)(A...)> { typedef R type(A...); };
template <typename C, typename R, typename... A> struct remove_class<R (C::*)(A...) const> { typedef R type(A...); };
/// Helper template to strip away type modifiers
template <typename T> struct intrinsic_type { typedef T type; };
template <typename T> struct intrinsic_type<const T> { typedef typename intrinsic_type<T>::type type; };
template <typename T> struct intrinsic_type<T*> { typedef typename intrinsic_type<T>::type type; };
template <typename T> struct intrinsic_type<T&> { typedef typename intrinsic_type<T>::type type; };
template <typename T> struct intrinsic_type<T&&> { typedef typename intrinsic_type<T>::type type; };
template <typename T, size_t N> struct intrinsic_type<const T[N]> { typedef typename intrinsic_type<T>::type type; };
template <typename T, size_t N> struct intrinsic_type<T[N]> { typedef typename intrinsic_type<T>::type type; };
template <typename T> using intrinsic_t = typename intrinsic_type<T>::type;
/// Helper type to replace 'void' in some expressions
struct void_type { };
/// Helper template which holds a list of types
template <typename...> struct type_list { };
/// Compile-time integer sum
#ifdef __cpp_fold_expressions
template <typename... Ts> constexpr size_t constexpr_sum(Ts... ns) { return (0 + ... + size_t{ns}); }
#else
constexpr size_t constexpr_sum() { return 0; }
template <typename T, typename... Ts>
constexpr size_t constexpr_sum(T n, Ts... ns) { return size_t{n} + constexpr_sum(ns...); }
#endif
NAMESPACE_BEGIN(constexpr_impl)
/// Implementation details for constexpr functions
constexpr int first(int i) { return i; }
template <typename T, typename... Ts>
constexpr int first(int i, T v, Ts... vs) { return v ? i : first(i + 1, vs...); }
constexpr int last(int /*i*/, int result) { return result; }
template <typename T, typename... Ts>
constexpr int last(int i, int result, T v, Ts... vs) { return last(i + 1, v ? i : result, vs...); }
NAMESPACE_END(constexpr_impl)
/// Return the index of the first type in Ts which satisfies Predicate<T>. Returns sizeof...(Ts) if
/// none match.
template <template<typename> class Predicate, typename... Ts>
constexpr int constexpr_first() { return constexpr_impl::first(0, Predicate<Ts>::value...); }
/// Return the index of the last type in Ts which satisfies Predicate<T>, or -1 if none match.
template <template<typename> class Predicate, typename... Ts>
constexpr int constexpr_last() { return constexpr_impl::last(0, -1, Predicate<Ts>::value...); }
/// Return the Nth element from the parameter pack
template <size_t N, typename T, typename... Ts>
struct pack_element { using type = typename pack_element<N - 1, Ts...>::type; };
template <typename T, typename... Ts>
struct pack_element<0, T, Ts...> { using type = T; };
/// Return the one and only type which matches the predicate, or Default if none match.
/// If more than one type matches the predicate, fail at compile-time.
template <template<typename> class Predicate, typename Default, typename... Ts>
struct exactly_one {
static constexpr auto found = constexpr_sum(Predicate<Ts>::value...);
static_assert(found <= 1, "Found more than one type matching the predicate");
static constexpr auto index = found ? constexpr_first<Predicate, Ts...>() : 0;
using type = conditional_t<found, typename pack_element<index, Ts...>::type, Default>;
};
template <template<typename> class P, typename Default>
struct exactly_one<P, Default> { using type = Default; };
template <template<typename> class Predicate, typename Default, typename... Ts>
using exactly_one_t = typename exactly_one<Predicate, Default, Ts...>::type;
/// Defer the evaluation of type T until types Us are instantiated
template <typename T, typename... /*Us*/> struct deferred_type { using type = T; };
template <typename T, typename... Us> using deferred_t = typename deferred_type<T, Us...>::type;
/// Like is_base_of, but requires a strict base (i.e. `is_strict_base_of<T, T>::value == false`,
/// unlike `std::is_base_of`)
template <typename Base, typename Derived> using is_strict_base_of = bool_constant<
std::is_base_of<Base, Derived>::value && !std::is_same<Base, Derived>::value>;
/// Like is_base_of, but also requires that the base type is accessible (i.e. that a Derived pointer
/// can be converted to a Base pointer)
template <typename Base, typename Derived> using is_accessible_base_of = bool_constant<
std::is_base_of<Base, Derived>::value && std::is_convertible<Derived *, Base *>::value>;
template <template<typename...> class Base>
struct is_template_base_of_impl {
template <typename... Us> static std::true_type check(Base<Us...> *);
static std::false_type check(...);
};
/// Check if a template is the base of a type. For example:
/// `is_template_base_of<Base, T>` is true if `struct T : Base<U> {}` where U can be anything
template <template<typename...> class Base, typename T>
#if !defined(_MSC_VER)
using is_template_base_of = decltype(is_template_base_of_impl<Base>::check((intrinsic_t<T>*)nullptr));
#else // MSVC2015 has trouble with decltype in template aliases
struct is_template_base_of : decltype(is_template_base_of_impl<Base>::check((intrinsic_t<T>*)nullptr)) { };
#endif
/// Check if T is an instantiation of the template `Class`. For example:
/// `is_instantiation<shared_ptr, T>` is true if `T == shared_ptr<U>` where U can be anything.
template <template<typename...> class Class, typename T>
struct is_instantiation : std::false_type { };
template <template<typename...> class Class, typename... Us>
struct is_instantiation<Class, Class<Us...>> : std::true_type { };
/// Check if T is std::shared_ptr<U> where U can be anything
template <typename T> using is_shared_ptr = is_instantiation<std::shared_ptr, T>;
/// Check if T looks like an input iterator
template <typename T, typename = void> struct is_input_iterator : std::false_type {};
template <typename T>
struct is_input_iterator<T, void_t<decltype(*std::declval<T &>()), decltype(++std::declval<T &>())>>
: std::true_type {};
template <typename T> using is_function_pointer = bool_constant<
std::is_pointer<T>::value && std::is_function<typename std::remove_pointer<T>::type>::value>;
template <typename F> struct strip_function_object {
using type = typename remove_class<decltype(&F::operator())>::type;
};
// Extracts the function signature from a function, function pointer or lambda.
template <typename Function, typename F = remove_reference_t<Function>>
using function_signature_t = conditional_t<
std::is_function<F>::value,
F,
typename conditional_t<
std::is_pointer<F>::value || std::is_member_pointer<F>::value,
std::remove_pointer<F>,
strip_function_object<F>
>::type
>;
/// Returns true if the type looks like a lambda: that is, isn't a function, pointer or member
/// pointer. Note that this can catch all sorts of other things, too; this is intended to be used
/// in a place where passing a lambda makes sense.
template <typename T> using is_lambda = satisfies_none_of<remove_reference_t<T>,
std::is_function, std::is_pointer, std::is_member_pointer>;
/// Ignore that a variable is unused in compiler warnings
inline void ignore_unused(const int *) { }
/// Apply a function over each element of a parameter pack
#ifdef __cpp_fold_expressions
#define PYBIND11_EXPAND_SIDE_EFFECTS(PATTERN) (((PATTERN), void()), ...)
#else
using expand_side_effects = bool[];
#define PYBIND11_EXPAND_SIDE_EFFECTS(PATTERN) pybind11::detail::expand_side_effects{ ((PATTERN), void(), false)..., false }
#endif
NAMESPACE_END(detail)
/// C++ bindings of builtin Python exceptions
class builtin_exception : public std::runtime_error {
public:
using std::runtime_error::runtime_error;
/// Set the error using the Python C API
virtual void set_error() const = 0;
};
#define PYBIND11_RUNTIME_EXCEPTION(name, type) \
class name : public builtin_exception { public: \
using builtin_exception::builtin_exception; \
name() : name("") { } \
void set_error() const override { PyErr_SetString(type, what()); } \
};
PYBIND11_RUNTIME_EXCEPTION(stop_iteration, PyExc_StopIteration)
PYBIND11_RUNTIME_EXCEPTION(index_error, PyExc_IndexError)
PYBIND11_RUNTIME_EXCEPTION(key_error, PyExc_KeyError)
PYBIND11_RUNTIME_EXCEPTION(value_error, PyExc_ValueError)
PYBIND11_RUNTIME_EXCEPTION(type_error, PyExc_TypeError)
PYBIND11_RUNTIME_EXCEPTION(cast_error, PyExc_RuntimeError) /// Thrown when pybind11::cast or handle::call fail due to a type casting error
PYBIND11_RUNTIME_EXCEPTION(reference_cast_error, PyExc_RuntimeError) /// Used internally
[[noreturn]] PYBIND11_NOINLINE inline void pybind11_fail(const char *reason) { throw std::runtime_error(reason); }
[[noreturn]] PYBIND11_NOINLINE inline void pybind11_fail(const std::string &reason) { throw std::runtime_error(reason); }
template <typename T, typename SFINAE = void> struct format_descriptor { };
NAMESPACE_BEGIN(detail)
// Returns the index of the given type in the type char array below, and in the list in numpy.h
// The order here is: bool; 8 ints ((signed,unsigned)x(8,16,32,64)bits); float,double,long double;
// complex float,double,long double. Note that the long double types only participate when long
// double is actually longer than double (it isn't under MSVC).
// NB: not only the string below but also complex.h and numpy.h rely on this order.
template <typename T, typename SFINAE = void> struct is_fmt_numeric { static constexpr bool value = false; };
template <typename T> struct is_fmt_numeric<T, enable_if_t<std::is_arithmetic<T>::value>> {
static constexpr bool value = true;
static constexpr int index = std::is_same<T, bool>::value ? 0 : 1 + (
std::is_integral<T>::value ? detail::log2(sizeof(T))*2 + std::is_unsigned<T>::value : 8 + (
std::is_same<T, double>::value ? 1 : std::is_same<T, long double>::value ? 2 : 0));
};
NAMESPACE_END(detail)
template <typename T> struct format_descriptor<T, detail::enable_if_t<std::is_arithmetic<T>::value>> {
static constexpr const char c = "?bBhHiIqQfdg"[detail::is_fmt_numeric<T>::index];
static constexpr const char value[2] = { c, '\0' };
static std::string format() { return std::string(1, c); }
};
#if !defined(PYBIND11_CPP17)
template <typename T> constexpr const char format_descriptor<
T, detail::enable_if_t<std::is_arithmetic<T>::value>>::value[2];
#endif
/// RAII wrapper that temporarily clears any Python error state
struct error_scope {
PyObject *type, *value, *trace;
error_scope() { PyErr_Fetch(&type, &value, &trace); }
~error_scope() { PyErr_Restore(type, value, trace); }
};
/// Dummy destructor wrapper that can be used to expose classes with a private destructor
struct nodelete { template <typename T> void operator()(T*) { } };
// overload_cast requires variable templates: C++14
#if defined(PYBIND11_CPP14)
#define PYBIND11_OVERLOAD_CAST 1
NAMESPACE_BEGIN(detail)
template <typename... Args>
struct overload_cast_impl {
constexpr overload_cast_impl() {} // MSVC 2015 needs this
template <typename Return>
constexpr auto operator()(Return (*pf)(Args...)) const noexcept
-> decltype(pf) { return pf; }
template <typename Return, typename Class>
constexpr auto operator()(Return (Class::*pmf)(Args...), std::false_type = {}) const noexcept
-> decltype(pmf) { return pmf; }
template <typename Return, typename Class>
constexpr auto operator()(Return (Class::*pmf)(Args...) const, std::true_type) const noexcept
-> decltype(pmf) { return pmf; }
};
NAMESPACE_END(detail)
/// Syntax sugar for resolving overloaded function pointers:
/// - regular: static_cast<Return (Class::*)(Arg0, Arg1, Arg2)>(&Class::func)
/// - sweet: overload_cast<Arg0, Arg1, Arg2>(&Class::func)
template <typename... Args>
static constexpr detail::overload_cast_impl<Args...> overload_cast = {};
// MSVC 2015 only accepts this particular initialization syntax for this variable template.
/// Const member function selector for overload_cast
/// - regular: static_cast<Return (Class::*)(Arg) const>(&Class::func)
/// - sweet: overload_cast<Arg>(&Class::func, const_)
static constexpr auto const_ = std::true_type{};
#else // no overload_cast: providing something that static_assert-fails:
template <typename... Args> struct overload_cast {
static_assert(detail::deferred_t<std::false_type, Args...>::value,
"pybind11::overload_cast<...> requires compiling in C++14 mode");
};
#endif // overload_cast
NAMESPACE_BEGIN(detail)
// Adaptor for converting arbitrary container arguments into a vector; implicitly convertible from
// any standard container (or C-style array) supporting std::begin/std::end, any singleton
// arithmetic type (if T is arithmetic), or explicitly constructible from an iterator pair.
template <typename T>
class any_container {
std::vector<T> v;
public:
any_container() = default;
// Can construct from a pair of iterators
template <typename It, typename = enable_if_t<is_input_iterator<It>::value>>
any_container(It first, It last) : v(first, last) { }
// Implicit conversion constructor from any arbitrary container type with values convertible to T
template <typename Container, typename = enable_if_t<std::is_convertible<decltype(*std::begin(std::declval<const Container &>())), T>::value>>
any_container(const Container &c) : any_container(std::begin(c), std::end(c)) { }
// initializer_list's aren't deducible, so don't get matched by the above template; we need this
// to explicitly allow implicit conversion from one:
template <typename TIn, typename = enable_if_t<std::is_convertible<TIn, T>::value>>
any_container(const std::initializer_list<TIn> &c) : any_container(c.begin(), c.end()) { }
// Avoid copying if given an rvalue vector of the correct type.
any_container(std::vector<T> &&v) : v(std::move(v)) { }
// Moves the vector out of an rvalue any_container
operator std::vector<T> &&() && { return std::move(v); }
// Dereferencing obtains a reference to the underlying vector
std::vector<T> &operator*() { return v; }
const std::vector<T> &operator*() const { return v; }
// -> lets you call methods on the underlying vector
std::vector<T> *operator->() { return &v; }
const std::vector<T> *operator->() const { return &v; }
};
NAMESPACE_END(detail)
NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,100 @@
/*
pybind11/detail/descr.h: Helper type for concatenating type signatures at compile time
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "common.h"
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
#if !defined(_MSC_VER)
# define PYBIND11_DESCR_CONSTEXPR static constexpr
#else
# define PYBIND11_DESCR_CONSTEXPR const
#endif
/* Concatenate type signatures at compile time */
template <size_t N, typename... Ts>
struct descr {
char text[N + 1];
constexpr descr() : text{'\0'} { }
constexpr descr(char const (&s)[N+1]) : descr(s, make_index_sequence<N>()) { }
template <size_t... Is>
constexpr descr(char const (&s)[N+1], index_sequence<Is...>) : text{s[Is]..., '\0'} { }
template <typename... Chars>
constexpr descr(char c, Chars... cs) : text{c, static_cast<char>(cs)..., '\0'} { }
static constexpr std::array<const std::type_info *, sizeof...(Ts) + 1> types() {
return {{&typeid(Ts)..., nullptr}};
}
};
template <size_t N1, size_t N2, typename... Ts1, typename... Ts2, size_t... Is1, size_t... Is2>
constexpr descr<N1 + N2, Ts1..., Ts2...> plus_impl(const descr<N1, Ts1...> &a, const descr<N2, Ts2...> &b,
index_sequence<Is1...>, index_sequence<Is2...>) {
return {a.text[Is1]..., b.text[Is2]...};
}
template <size_t N1, size_t N2, typename... Ts1, typename... Ts2>
constexpr descr<N1 + N2, Ts1..., Ts2...> operator+(const descr<N1, Ts1...> &a, const descr<N2, Ts2...> &b) {
return plus_impl(a, b, make_index_sequence<N1>(), make_index_sequence<N2>());
}
template <size_t N>
constexpr descr<N - 1> _(char const(&text)[N]) { return descr<N - 1>(text); }
constexpr descr<0> _(char const(&)[1]) { return {}; }
template <size_t Rem, size_t... Digits> struct int_to_str : int_to_str<Rem/10, Rem%10, Digits...> { };
template <size_t...Digits> struct int_to_str<0, Digits...> {
static constexpr auto digits = descr<sizeof...(Digits)>(('0' + Digits)...);
};
// Ternary description (like std::conditional)
template <bool B, size_t N1, size_t N2>
constexpr enable_if_t<B, descr<N1 - 1>> _(char const(&text1)[N1], char const(&)[N2]) {
return _(text1);
}
template <bool B, size_t N1, size_t N2>
constexpr enable_if_t<!B, descr<N2 - 1>> _(char const(&)[N1], char const(&text2)[N2]) {
return _(text2);
}
template <bool B, typename T1, typename T2>
constexpr enable_if_t<B, T1> _(const T1 &d, const T2 &) { return d; }
template <bool B, typename T1, typename T2>
constexpr enable_if_t<!B, T2> _(const T1 &, const T2 &d) { return d; }
template <size_t Size> auto constexpr _() -> decltype(int_to_str<Size / 10, Size % 10>::digits) {
return int_to_str<Size / 10, Size % 10>::digits;
}
template <typename Type> constexpr descr<1, Type> _() { return {'%'}; }
constexpr descr<0> concat() { return {}; }
template <size_t N, typename... Ts>
constexpr descr<N, Ts...> concat(const descr<N, Ts...> &descr) { return descr; }
template <size_t N, typename... Ts, typename... Args>
constexpr auto concat(const descr<N, Ts...> &d, const Args &...args)
-> decltype(std::declval<descr<N + 2, Ts...>>() + concat(args...)) {
return d + _(", ") + concat(args...);
}
template <size_t N, typename... Ts>
constexpr descr<N + 2, Ts...> type_descr(const descr<N, Ts...> &descr) {
return _("{") + descr + _("}");
}
NAMESPACE_END(detail)
NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,325 @@
/*
pybind11/detail/init.h: init factory function implementation and support code.
Copyright (c) 2017 Jason Rhinelander <jason@imaginary.ca>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "class.h"
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
template <>
class type_caster<value_and_holder> {
public:
bool load(handle h, bool) {
value = reinterpret_cast<value_and_holder *>(h.ptr());
return true;
}
template <typename> using cast_op_type = value_and_holder &;
operator value_and_holder &() { return *value; }
static constexpr auto name = _<value_and_holder>();
private:
value_and_holder *value = nullptr;
};
NAMESPACE_BEGIN(initimpl)
inline void no_nullptr(void *ptr) {
if (!ptr) throw type_error("pybind11::init(): factory function returned nullptr");
}
// Implementing functions for all forms of py::init<...> and py::init(...)
template <typename Class> using Cpp = typename Class::type;
template <typename Class> using Alias = typename Class::type_alias;
template <typename Class> using Holder = typename Class::holder_type;
template <typename Class> using is_alias_constructible = std::is_constructible<Alias<Class>, Cpp<Class> &&>;
// Takes a Cpp pointer and returns true if it actually is a polymorphic Alias instance.
template <typename Class, enable_if_t<Class::has_alias, int> = 0>
bool is_alias(Cpp<Class> *ptr) {
return dynamic_cast<Alias<Class> *>(ptr) != nullptr;
}
// Failing fallback version of the above for a no-alias class (always returns false)
template <typename /*Class*/>
constexpr bool is_alias(void *) { return false; }
// Attempts to constructs an alias using a `Alias(Cpp &&)` constructor. This allows types with
// an alias to provide only a single Cpp factory function as long as the Alias can be
// constructed from an rvalue reference of the base Cpp type. This means that Alias classes
// can, when appropriate, simply define a `Alias(Cpp &&)` constructor rather than needing to
// inherit all the base class constructors.
template <typename Class>
void construct_alias_from_cpp(std::true_type /*is_alias_constructible*/,
value_and_holder &v_h, Cpp<Class> &&base) {
v_h.value_ptr() = new Alias<Class>(std::move(base));
}
template <typename Class>
[[noreturn]] void construct_alias_from_cpp(std::false_type /*!is_alias_constructible*/,
value_and_holder &, Cpp<Class> &&) {
throw type_error("pybind11::init(): unable to convert returned instance to required "
"alias class: no `Alias<Class>(Class &&)` constructor available");
}
// Error-generating fallback for factories that don't match one of the below construction
// mechanisms.
template <typename Class>
void construct(...) {
static_assert(!std::is_same<Class, Class>::value /* always false */,
"pybind11::init(): init function must return a compatible pointer, "
"holder, or value");
}
// Pointer return v1: the factory function returns a class pointer for a registered class.
// If we don't need an alias (because this class doesn't have one, or because the final type is
// inherited on the Python side) we can simply take over ownership. Otherwise we need to try to
// construct an Alias from the returned base instance.
template <typename Class>
void construct(value_and_holder &v_h, Cpp<Class> *ptr, bool need_alias) {
no_nullptr(ptr);
if (Class::has_alias && need_alias && !is_alias<Class>(ptr)) {
// We're going to try to construct an alias by moving the cpp type. Whether or not
// that succeeds, we still need to destroy the original cpp pointer (either the
// moved away leftover, if the alias construction works, or the value itself if we
// throw an error), but we can't just call `delete ptr`: it might have a special
// deleter, or might be shared_from_this. So we construct a holder around it as if
// it was a normal instance, then steal the holder away into a local variable; thus
// the holder and destruction happens when we leave the C++ scope, and the holder
// class gets to handle the destruction however it likes.
v_h.value_ptr() = ptr;
v_h.set_instance_registered(true); // To prevent init_instance from registering it
v_h.type->init_instance(v_h.inst, nullptr); // Set up the holder
Holder<Class> temp_holder(std::move(v_h.holder<Holder<Class>>())); // Steal the holder
v_h.type->dealloc(v_h); // Destroys the moved-out holder remains, resets value ptr to null
v_h.set_instance_registered(false);
construct_alias_from_cpp<Class>(is_alias_constructible<Class>{}, v_h, std::move(*ptr));
} else {
// Otherwise the type isn't inherited, so we don't need an Alias
v_h.value_ptr() = ptr;
}
}
// Pointer return v2: a factory that always returns an alias instance ptr. We simply take over
// ownership of the pointer.
template <typename Class, enable_if_t<Class::has_alias, int> = 0>
void construct(value_and_holder &v_h, Alias<Class> *alias_ptr, bool) {
no_nullptr(alias_ptr);
v_h.value_ptr() = static_cast<Cpp<Class> *>(alias_ptr);
}
// Holder return: copy its pointer, and move or copy the returned holder into the new instance's
// holder. This also handles types like std::shared_ptr<T> and std::unique_ptr<T> where T is a
// derived type (through those holder's implicit conversion from derived class holder constructors).
template <typename Class>
void construct(value_and_holder &v_h, Holder<Class> holder, bool need_alias) {
auto *ptr = holder_helper<Holder<Class>>::get(holder);
// If we need an alias, check that the held pointer is actually an alias instance
if (Class::has_alias && need_alias && !is_alias<Class>(ptr))
throw type_error("pybind11::init(): construction failed: returned holder-wrapped instance "
"is not an alias instance");
v_h.value_ptr() = ptr;
v_h.type->init_instance(v_h.inst, &holder);
}
// return-by-value version 1: returning a cpp class by value. If the class has an alias and an
// alias is required the alias must have an `Alias(Cpp &&)` constructor so that we can construct
// the alias from the base when needed (i.e. because of Python-side inheritance). When we don't
// need it, we simply move-construct the cpp value into a new instance.
template <typename Class>
void construct(value_and_holder &v_h, Cpp<Class> &&result, bool need_alias) {
static_assert(std::is_move_constructible<Cpp<Class>>::value,
"pybind11::init() return-by-value factory function requires a movable class");
if (Class::has_alias && need_alias)
construct_alias_from_cpp<Class>(is_alias_constructible<Class>{}, v_h, std::move(result));
else
v_h.value_ptr() = new Cpp<Class>(std::move(result));
}
// return-by-value version 2: returning a value of the alias type itself. We move-construct an
// Alias instance (even if no the python-side inheritance is involved). The is intended for
// cases where Alias initialization is always desired.
template <typename Class>
void construct(value_and_holder &v_h, Alias<Class> &&result, bool) {
static_assert(std::is_move_constructible<Alias<Class>>::value,
"pybind11::init() return-by-alias-value factory function requires a movable alias class");
v_h.value_ptr() = new Alias<Class>(std::move(result));
}
// Implementing class for py::init<...>()
template <typename... Args>
struct constructor {
template <typename Class, typename... Extra, enable_if_t<!Class::has_alias, int> = 0>
static void execute(Class &cl, const Extra&... extra) {
cl.def("__init__", [](value_and_holder &v_h, Args... args) {
v_h.value_ptr() = new Cpp<Class>{std::forward<Args>(args)...};
}, is_new_style_constructor(), extra...);
}
template <typename Class, typename... Extra,
enable_if_t<Class::has_alias &&
std::is_constructible<Cpp<Class>, Args...>::value, int> = 0>
static void execute(Class &cl, const Extra&... extra) {
cl.def("__init__", [](value_and_holder &v_h, Args... args) {
if (Py_TYPE(v_h.inst) == v_h.type->type)
v_h.value_ptr() = new Cpp<Class>{std::forward<Args>(args)...};
else
v_h.value_ptr() = new Alias<Class>{std::forward<Args>(args)...};
}, is_new_style_constructor(), extra...);
}
template <typename Class, typename... Extra,
enable_if_t<Class::has_alias &&
!std::is_constructible<Cpp<Class>, Args...>::value, int> = 0>
static void execute(Class &cl, const Extra&... extra) {
cl.def("__init__", [](value_and_holder &v_h, Args... args) {
v_h.value_ptr() = new Alias<Class>{std::forward<Args>(args)...};
}, is_new_style_constructor(), extra...);
}
};
// Implementing class for py::init_alias<...>()
template <typename... Args> struct alias_constructor {
template <typename Class, typename... Extra,
enable_if_t<Class::has_alias && std::is_constructible<Alias<Class>, Args...>::value, int> = 0>
static void execute(Class &cl, const Extra&... extra) {
cl.def("__init__", [](value_and_holder &v_h, Args... args) {
v_h.value_ptr() = new Alias<Class>{std::forward<Args>(args)...};
}, is_new_style_constructor(), extra...);
}
};
// Implementation class for py::init(Func) and py::init(Func, AliasFunc)
template <typename CFunc, typename AFunc = void_type (*)(),
typename = function_signature_t<CFunc>, typename = function_signature_t<AFunc>>
struct factory;
// Specialization for py::init(Func)
template <typename Func, typename Return, typename... Args>
struct factory<Func, void_type (*)(), Return(Args...)> {
remove_reference_t<Func> class_factory;
factory(Func &&f) : class_factory(std::forward<Func>(f)) { }
// The given class either has no alias or has no separate alias factory;
// this always constructs the class itself. If the class is registered with an alias
// type and an alias instance is needed (i.e. because the final type is a Python class
// inheriting from the C++ type) the returned value needs to either already be an alias
// instance, or the alias needs to be constructible from a `Class &&` argument.
template <typename Class, typename... Extra>
void execute(Class &cl, const Extra &...extra) && {
#if defined(PYBIND11_CPP14)
cl.def("__init__", [func = std::move(class_factory)]
#else
auto &func = class_factory;
cl.def("__init__", [func]
#endif
(value_and_holder &v_h, Args... args) {
construct<Class>(v_h, func(std::forward<Args>(args)...),
Py_TYPE(v_h.inst) != v_h.type->type);
}, is_new_style_constructor(), extra...);
}
};
// Specialization for py::init(Func, AliasFunc)
template <typename CFunc, typename AFunc,
typename CReturn, typename... CArgs, typename AReturn, typename... AArgs>
struct factory<CFunc, AFunc, CReturn(CArgs...), AReturn(AArgs...)> {
static_assert(sizeof...(CArgs) == sizeof...(AArgs),
"pybind11::init(class_factory, alias_factory): class and alias factories "
"must have identical argument signatures");
static_assert(all_of<std::is_same<CArgs, AArgs>...>::value,
"pybind11::init(class_factory, alias_factory): class and alias factories "
"must have identical argument signatures");
remove_reference_t<CFunc> class_factory;
remove_reference_t<AFunc> alias_factory;
factory(CFunc &&c, AFunc &&a)
: class_factory(std::forward<CFunc>(c)), alias_factory(std::forward<AFunc>(a)) { }
// The class factory is called when the `self` type passed to `__init__` is the direct
// class (i.e. not inherited), the alias factory when `self` is a Python-side subtype.
template <typename Class, typename... Extra>
void execute(Class &cl, const Extra&... extra) && {
static_assert(Class::has_alias, "The two-argument version of `py::init()` can "
"only be used if the class has an alias");
#if defined(PYBIND11_CPP14)
cl.def("__init__", [class_func = std::move(class_factory), alias_func = std::move(alias_factory)]
#else
auto &class_func = class_factory;
auto &alias_func = alias_factory;
cl.def("__init__", [class_func, alias_func]
#endif
(value_and_holder &v_h, CArgs... args) {
if (Py_TYPE(v_h.inst) == v_h.type->type)
// If the instance type equals the registered type we don't have inheritance, so
// don't need the alias and can construct using the class function:
construct<Class>(v_h, class_func(std::forward<CArgs>(args)...), false);
else
construct<Class>(v_h, alias_func(std::forward<CArgs>(args)...), true);
}, is_new_style_constructor(), extra...);
}
};
/// Set just the C++ state. Same as `__init__`.
template <typename Class, typename T>
void setstate(value_and_holder &v_h, T &&result, bool need_alias) {
construct<Class>(v_h, std::forward<T>(result), need_alias);
}
/// Set both the C++ and Python states
template <typename Class, typename T, typename O,
enable_if_t<std::is_convertible<O, handle>::value, int> = 0>
void setstate(value_and_holder &v_h, std::pair<T, O> &&result, bool need_alias) {
construct<Class>(v_h, std::move(result.first), need_alias);
setattr((PyObject *) v_h.inst, "__dict__", result.second);
}
/// Implementation for py::pickle(GetState, SetState)
template <typename Get, typename Set,
typename = function_signature_t<Get>, typename = function_signature_t<Set>>
struct pickle_factory;
template <typename Get, typename Set,
typename RetState, typename Self, typename NewInstance, typename ArgState>
struct pickle_factory<Get, Set, RetState(Self), NewInstance(ArgState)> {
static_assert(std::is_same<intrinsic_t<RetState>, intrinsic_t<ArgState>>::value,
"The type returned by `__getstate__` must be the same "
"as the argument accepted by `__setstate__`");
remove_reference_t<Get> get;
remove_reference_t<Set> set;
pickle_factory(Get get, Set set)
: get(std::forward<Get>(get)), set(std::forward<Set>(set)) { }
template <typename Class, typename... Extra>
void execute(Class &cl, const Extra &...extra) && {
cl.def("__getstate__", std::move(get));
#if defined(PYBIND11_CPP14)
cl.def("__setstate__", [func = std::move(set)]
#else
auto &func = set;
cl.def("__setstate__", [func]
#endif
(value_and_holder &v_h, ArgState state) {
setstate<Class>(v_h, func(std::forward<ArgState>(state)),
Py_TYPE(v_h.inst) != v_h.type->type);
}, is_new_style_constructor(), extra...);
}
};
NAMESPACE_END(initimpl)
NAMESPACE_END(detail)
NAMESPACE_END(pybind11)

View File

@ -0,0 +1,247 @@
/*
pybind11/detail/internals.h: Internal data structure and related functions
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "../pytypes.h"
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
// Forward declarations
inline PyTypeObject *make_static_property_type();
inline PyTypeObject *make_default_metaclass();
inline PyObject *make_object_base_type(PyTypeObject *metaclass);
// Python loads modules by default with dlopen with the RTLD_LOCAL flag; under libc++ and possibly
// other STLs, this means `typeid(A)` from one module won't equal `typeid(A)` from another module
// even when `A` is the same, non-hidden-visibility type (e.g. from a common include). Under
// libstdc++, this doesn't happen: equality and the type_index hash are based on the type name,
// which works. If not under a known-good stl, provide our own name-based hash and equality
// functions that use the type name.
#if defined(__GLIBCXX__)
inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) { return lhs == rhs; }
using type_hash = std::hash<std::type_index>;
using type_equal_to = std::equal_to<std::type_index>;
#else
inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) {
return lhs.name() == rhs.name() || std::strcmp(lhs.name(), rhs.name()) == 0;
}
struct type_hash {
size_t operator()(const std::type_index &t) const {
size_t hash = 5381;
const char *ptr = t.name();
while (auto c = static_cast<unsigned char>(*ptr++))
hash = (hash * 33) ^ c;
return hash;
}
};
struct type_equal_to {
bool operator()(const std::type_index &lhs, const std::type_index &rhs) const {
return lhs.name() == rhs.name() || std::strcmp(lhs.name(), rhs.name()) == 0;
}
};
#endif
template <typename value_type>
using type_map = std::unordered_map<std::type_index, value_type, type_hash, type_equal_to>;
struct overload_hash {
inline size_t operator()(const std::pair<const PyObject *, const char *>& v) const {
size_t value = std::hash<const void *>()(v.first);
value ^= std::hash<const void *>()(v.second) + 0x9e3779b9 + (value<<6) + (value>>2);
return value;
}
};
/// Internal data structure used to track registered instances and types.
/// Whenever binary incompatible changes are made to this structure,
/// `PYBIND11_INTERNALS_VERSION` must be incremented.
struct internals {
type_map<type_info *> registered_types_cpp; // std::type_index -> pybind11's type information
std::unordered_map<PyTypeObject *, std::vector<type_info *>> registered_types_py; // PyTypeObject* -> base type_info(s)
std::unordered_multimap<const void *, instance*> registered_instances; // void * -> instance*
std::unordered_set<std::pair<const PyObject *, const char *>, overload_hash> inactive_overload_cache;
type_map<std::vector<bool (*)(PyObject *, void *&)>> direct_conversions;
std::unordered_map<const PyObject *, std::vector<PyObject *>> patients;
std::forward_list<void (*) (std::exception_ptr)> registered_exception_translators;
std::unordered_map<std::string, void *> shared_data; // Custom data to be shared across extensions
std::vector<PyObject *> loader_patient_stack; // Used by `loader_life_support`
std::forward_list<std::string> static_strings; // Stores the std::strings backing detail::c_str()
PyTypeObject *static_property_type;
PyTypeObject *default_metaclass;
PyObject *instance_base;
#if defined(WITH_THREAD)
decltype(PyThread_create_key()) tstate = 0; // Usually an int but a long on Cygwin64 with Python 3.x
PyInterpreterState *istate = nullptr;
#endif
};
/// Additional type information which does not fit into the PyTypeObject.
/// Changes to this struct also require bumping `PYBIND11_INTERNALS_VERSION`.
struct type_info {
PyTypeObject *type;
const std::type_info *cpptype;
size_t type_size, holder_size_in_ptrs;
void *(*operator_new)(size_t);
void (*init_instance)(instance *, const void *);
void (*dealloc)(value_and_holder &v_h);
std::vector<PyObject *(*)(PyObject *, PyTypeObject *)> implicit_conversions;
std::vector<std::pair<const std::type_info *, void *(*)(void *)>> implicit_casts;
std::vector<bool (*)(PyObject *, void *&)> *direct_conversions;
buffer_info *(*get_buffer)(PyObject *, void *) = nullptr;
void *get_buffer_data = nullptr;
void *(*module_local_load)(PyObject *, const type_info *) = nullptr;
/* A simple type never occurs as a (direct or indirect) parent
* of a class that makes use of multiple inheritance */
bool simple_type : 1;
/* True if there is no multiple inheritance in this type's inheritance tree */
bool simple_ancestors : 1;
/* for base vs derived holder_type checks */
bool default_holder : 1;
/* true if this is a type registered with py::module_local */
bool module_local : 1;
};
/// Tracks the `internals` and `type_info` ABI version independent of the main library version
#define PYBIND11_INTERNALS_VERSION 1
#if defined(WITH_THREAD)
# define PYBIND11_INTERNALS_KIND ""
#else
# define PYBIND11_INTERNALS_KIND "_without_thread"
#endif
#define PYBIND11_INTERNALS_ID "__pybind11_internals_v" \
PYBIND11_TOSTRING(PYBIND11_INTERNALS_VERSION) PYBIND11_INTERNALS_KIND "__"
#define PYBIND11_MODULE_LOCAL_ID "__pybind11_module_local_v" \
PYBIND11_TOSTRING(PYBIND11_INTERNALS_VERSION) PYBIND11_INTERNALS_KIND "__"
/// Each module locally stores a pointer to the `internals` data. The data
/// itself is shared among modules with the same `PYBIND11_INTERNALS_ID`.
inline internals *&get_internals_ptr() {
static internals *internals_ptr = nullptr;
return internals_ptr;
}
/// Return a reference to the current `internals` data
PYBIND11_NOINLINE inline internals &get_internals() {
auto *&internals_ptr = get_internals_ptr();
if (internals_ptr)
return *internals_ptr;
constexpr auto *id = PYBIND11_INTERNALS_ID;
auto builtins = handle(PyEval_GetBuiltins());
if (builtins.contains(id) && isinstance<capsule>(builtins[id])) {
internals_ptr = *static_cast<internals **>(capsule(builtins[id]));
// We loaded builtins through python's builtins, which means that our `error_already_set`
// and `builtin_exception` may be different local classes than the ones set up in the
// initial exception translator, below, so add another for our local exception classes.
//
// libstdc++ doesn't require this (types there are identified only by name)
#if !defined(__GLIBCXX__)
internals_ptr->registered_exception_translators.push_front(
[](std::exception_ptr p) -> void {
try {
if (p) std::rethrow_exception(p);
} catch (error_already_set &e) { e.restore(); return;
} catch (const builtin_exception &e) { e.set_error(); return;
}
}
);
#endif
} else {
internals_ptr = new internals();
#if defined(WITH_THREAD)
PyEval_InitThreads();
PyThreadState *tstate = PyThreadState_Get();
internals_ptr->tstate = PyThread_create_key();
PyThread_set_key_value(internals_ptr->tstate, tstate);
internals_ptr->istate = tstate->interp;
#endif
builtins[id] = capsule(&internals_ptr);
internals_ptr->registered_exception_translators.push_front(
[](std::exception_ptr p) -> void {
try {
if (p) std::rethrow_exception(p);
} catch (error_already_set &e) { e.restore(); return;
} catch (const builtin_exception &e) { e.set_error(); return;
} catch (const std::bad_alloc &e) { PyErr_SetString(PyExc_MemoryError, e.what()); return;
} catch (const std::domain_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
} catch (const std::invalid_argument &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
} catch (const std::length_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
} catch (const std::out_of_range &e) { PyErr_SetString(PyExc_IndexError, e.what()); return;
} catch (const std::range_error &e) { PyErr_SetString(PyExc_ValueError, e.what()); return;
} catch (const std::exception &e) { PyErr_SetString(PyExc_RuntimeError, e.what()); return;
} catch (...) {
PyErr_SetString(PyExc_RuntimeError, "Caught an unknown exception!");
return;
}
}
);
internals_ptr->static_property_type = make_static_property_type();
internals_ptr->default_metaclass = make_default_metaclass();
internals_ptr->instance_base = make_object_base_type(internals_ptr->default_metaclass);
}
return *internals_ptr;
}
/// Works like `internals.registered_types_cpp`, but for module-local registered types:
inline type_map<type_info *> &registered_local_types_cpp() {
static type_map<type_info *> locals{};
return locals;
}
/// Constructs a std::string with the given arguments, stores it in `internals`, and returns its
/// `c_str()`. Such strings objects have a long storage duration -- the internal strings are only
/// cleared when the program exits or after interpreter shutdown (when embedding), and so are
/// suitable for c-style strings needed by Python internals (such as PyTypeObject's tp_name).
template <typename... Args>
const char *c_str(Args &&...args) {
auto &strings = get_internals().static_strings;
strings.emplace_front(std::forward<Args>(args)...);
return strings.front().c_str();
}
NAMESPACE_END(detail)
/// Returns a named pointer that is shared among all extension modules (using the same
/// pybind11 version) running in the current interpreter. Names starting with underscores
/// are reserved for internal usage. Returns `nullptr` if no matching entry was found.
inline PYBIND11_NOINLINE void *get_shared_data(const std::string &name) {
auto &internals = detail::get_internals();
auto it = internals.shared_data.find(name);
return it != internals.shared_data.end() ? it->second : nullptr;
}
/// Set the shared data that can be later recovered by `get_shared_data()`.
inline PYBIND11_NOINLINE void *set_shared_data(const std::string &name, void *data) {
detail::get_internals().shared_data[name] = data;
return data;
}
/// Returns a typed reference to a shared data entry (by using `get_shared_data()`) if
/// such entry exists. Otherwise, a new object of default-constructible type `T` is
/// added to the shared data under the given name and a reference to it is returned.
template<typename T>
T &get_or_create_shared_data(const std::string &name) {
auto &internals = detail::get_internals();
auto it = internals.shared_data.find(name);
T *ptr = (T *) (it != internals.shared_data.end() ? it->second : nullptr);
if (!ptr) {
ptr = new T();
internals.shared_data[name] = ptr;
}
return *ptr;
}
NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,53 @@
/*
pybind11/detail/typeid.h: Compiler-independent access to type identifiers
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include <cstdio>
#include <cstdlib>
#if defined(__GNUG__)
#include <cxxabi.h>
#endif
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
/// Erase all occurrences of a substring
inline void erase_all(std::string &string, const std::string &search) {
for (size_t pos = 0;;) {
pos = string.find(search, pos);
if (pos == std::string::npos) break;
string.erase(pos, search.length());
}
}
PYBIND11_NOINLINE inline void clean_type_id(std::string &name) {
#if defined(__GNUG__)
int status = 0;
std::unique_ptr<char, void (*)(void *)> res {
abi::__cxa_demangle(name.c_str(), nullptr, nullptr, &status), std::free };
if (status == 0)
name = res.get();
#else
detail::erase_all(name, "class ");
detail::erase_all(name, "struct ");
detail::erase_all(name, "enum ");
#endif
detail::erase_all(name, "pybind11::");
}
NAMESPACE_END(detail)
/// Return a string representation of a C++ type
template <typename T> static std::string type_id() {
std::string name(typeid(T).name());
detail::clean_type_id(name);
return name;
}
NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,614 @@
/*
pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "numpy.h"
#if defined(__INTEL_COMPILER)
# pragma warning(disable: 1682) // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
#elif defined(__GNUG__) || defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wconversion"
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
# ifdef __clang__
// Eigen generates a bunch of implicit-copy-constructor-is-deprecated warnings with -Wdeprecated
// under Clang, so disable that warning here:
# pragma GCC diagnostic ignored "-Wdeprecated"
# endif
# if __GNUC__ >= 7
# pragma GCC diagnostic ignored "-Wint-in-bool-context"
# endif
#endif
#include <Eigen/Core>
#include <Eigen/SparseCore>
#if defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
// Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit
// move constructors that break things. We could detect this an explicitly copy, but an extra copy
// of matrices seems highly undesirable.
static_assert(EIGEN_VERSION_AT_LEAST(3,2,7), "Eigen support in pybind11 requires Eigen >= 3.2.7");
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
// Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides:
using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
template <typename MatrixType> using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
template <typename MatrixType> using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;
NAMESPACE_BEGIN(detail)
#if EIGEN_VERSION_AT_LEAST(3,3,0)
using EigenIndex = Eigen::Index;
#else
using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE;
#endif
// Matches Eigen::Map, Eigen::Ref, blocks, etc:
template <typename T> using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>, std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
template <typename T> using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
template <typename T> using is_eigen_dense_plain = all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>;
template <typename T> using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
// Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This
// basically covers anything that can be assigned to a dense matrix but that don't have a typical
// matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and
// SelfAdjointView fall into this category.
template <typename T> using is_eigen_other = all_of<
is_template_base_of<Eigen::EigenBase, T>,
negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>
>;
// Captures numpy/eigen conformability status (returned by EigenProps::conformable()):
template <bool EigenRowMajor> struct EigenConformable {
bool conformable = false;
EigenIndex rows = 0, cols = 0;
EigenDStride stride{0, 0}; // Only valid if negativestrides is false!
bool negativestrides = false; // If true, do not use stride!
EigenConformable(bool fits = false) : conformable{fits} {}
// Matrix type:
EigenConformable(EigenIndex r, EigenIndex c,
EigenIndex rstride, EigenIndex cstride) :
conformable{true}, rows{r}, cols{c} {
// TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity. http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747
if (rstride < 0 || cstride < 0) {
negativestrides = true;
} else {
stride = {EigenRowMajor ? rstride : cstride /* outer stride */,
EigenRowMajor ? cstride : rstride /* inner stride */ };
}
}
// Vector type:
EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride)
: EigenConformable(r, c, r == 1 ? c*stride : stride, c == 1 ? r : r*stride) {}
template <typename props> bool stride_compatible() const {
// To have compatible strides, we need (on both dimensions) one of fully dynamic strides,
// matching strides, or a dimension size of 1 (in which case the stride value is irrelevant)
return
!negativestrides &&
(props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner() ||
(EigenRowMajor ? cols : rows) == 1) &&
(props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer() ||
(EigenRowMajor ? rows : cols) == 1);
}
operator bool() const { return conformable; }
};
template <typename Type> struct eigen_extract_stride { using type = Type; };
template <typename PlainObjectType, int MapOptions, typename StrideType>
struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> { using type = StrideType; };
template <typename PlainObjectType, int Options, typename StrideType>
struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> { using type = StrideType; };
// Helper struct for extracting information from an Eigen type
template <typename Type_> struct EigenProps {
using Type = Type_;
using Scalar = typename Type::Scalar;
using StrideType = typename eigen_extract_stride<Type>::type;
static constexpr EigenIndex
rows = Type::RowsAtCompileTime,
cols = Type::ColsAtCompileTime,
size = Type::SizeAtCompileTime;
static constexpr bool
row_major = Type::IsRowMajor,
vector = Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
fixed_rows = rows != Eigen::Dynamic,
fixed_cols = cols != Eigen::Dynamic,
fixed = size != Eigen::Dynamic, // Fully-fixed size
dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size
template <EigenIndex i, EigenIndex ifzero> using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
static constexpr EigenIndex inner_stride = if_zero<StrideType::InnerStrideAtCompileTime, 1>::value,
outer_stride = if_zero<StrideType::OuterStrideAtCompileTime,
vector ? size : row_major ? cols : rows>::value;
static constexpr bool dynamic_stride = inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
static constexpr bool requires_row_major = !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
static constexpr bool requires_col_major = !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;
// Takes an input array and determines whether we can make it fit into the Eigen type. If
// the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector
// (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type).
static EigenConformable<row_major> conformable(const array &a) {
const auto dims = a.ndim();
if (dims < 1 || dims > 2)
return false;
if (dims == 2) { // Matrix type: require exact match (or dynamic)
EigenIndex
np_rows = a.shape(0),
np_cols = a.shape(1),
np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)),
np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar));
if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols))
return false;
return {np_rows, np_cols, np_rstride, np_cstride};
}
// Otherwise we're storing an n-vector. Only one of the strides will be used, but whichever
// is used, we want the (single) numpy stride value.
const EigenIndex n = a.shape(0),
stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar));
if (vector) { // Eigen type is a compile-time vector
if (fixed && size != n)
return false; // Vector size mismatch
return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride};
}
else if (fixed) {
// The type has a fixed size, but is not a vector: abort
return false;
}
else if (fixed_cols) {
// Since this isn't a vector, cols must be != 1. We allow this only if it exactly
// equals the number of elements (rows is Dynamic, and so 1 row is allowed).
if (cols != n) return false;
return {1, n, stride};
}
else {
// Otherwise it's either fully dynamic, or column dynamic; both become a column vector
if (fixed_rows && rows != n) return false;
return {n, 1, stride};
}
}
static constexpr bool show_writeable = is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
static constexpr bool show_order = is_eigen_dense_map<Type>::value;
static constexpr bool show_c_contiguous = show_order && requires_row_major;
static constexpr bool show_f_contiguous = !show_c_contiguous && show_order && requires_col_major;
static constexpr auto descriptor =
_("numpy.ndarray[") + npy_format_descriptor<Scalar>::name +
_("[") + _<fixed_rows>(_<(size_t) rows>(), _("m")) +
_(", ") + _<fixed_cols>(_<(size_t) cols>(), _("n")) +
_("]") +
// For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to be
// satisfied: writeable=True (for a mutable reference), and, depending on the map's stride
// options, possibly f_contiguous or c_contiguous. We include them in the descriptor output
// to provide some hint as to why a TypeError is occurring (otherwise it can be confusing to
// see that a function accepts a 'numpy.ndarray[float64[3,2]]' and an error message that you
// *gave* a numpy.ndarray of the right type and dimensions.
_<show_writeable>(", flags.writeable", "") +
_<show_c_contiguous>(", flags.c_contiguous", "") +
_<show_f_contiguous>(", flags.f_contiguous", "") +
_("]");
};
// Casts an Eigen type to numpy array. If given a base, the numpy array references the src data,
// otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array.
template <typename props> handle eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
constexpr ssize_t elem_size = sizeof(typename props::Scalar);
array a;
if (props::vector)
a = array({ src.size() }, { elem_size * src.innerStride() }, src.data(), base);
else
a = array({ src.rows(), src.cols() }, { elem_size * src.rowStride(), elem_size * src.colStride() },
src.data(), base);
if (!writeable)
array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
return a.release();
}
// Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that
// reference the Eigen object's data with `base` as the python-registered base class (if omitted,
// the base will be set to None, and lifetime management is up to the caller). The numpy array is
// non-writeable if the given type is const.
template <typename props, typename Type>
handle eigen_ref_array(Type &src, handle parent = none()) {
// none here is to get past array's should-we-copy detection, which currently always
// copies when there is no base. Setting the base to None should be harmless.
return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value);
}
// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a numpy
// array that references the encapsulated data with a python-side reference to the capsule to tie
// its destruction to that of any dependent python objects. Const-ness is determined by whether or
// not the Type of the pointer given is const.
template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>>
handle eigen_encapsulate(Type *src) {
capsule base(src, [](void *o) { delete static_cast<Type *>(o); });
return eigen_ref_array<props>(*src, base);
}
// Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense
// types.
template<typename Type>
struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> {
using Scalar = typename Type::Scalar;
using props = EigenProps<Type>;
bool load(handle src, bool convert) {
// If we're in no-convert mode, only load if given an array of the correct type
if (!convert && !isinstance<array_t<Scalar>>(src))
return false;
// Coerce into an array, but don't do type conversion yet; the copy below handles it.
auto buf = array::ensure(src);
if (!buf)
return false;
auto dims = buf.ndim();
if (dims < 1 || dims > 2)
return false;
auto fits = props::conformable(buf);
if (!fits)
return false;
// Allocate the new type, then build a numpy reference into it
value = Type(fits.rows, fits.cols);
auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value));
if (dims == 1) ref = ref.squeeze();
else if (ref.ndim() == 1) buf = buf.squeeze();
int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr());
if (result < 0) { // Copy failed!
PyErr_Clear();
return false;
}
return true;
}
private:
// Cast implementation
template <typename CType>
static handle cast_impl(CType *src, return_value_policy policy, handle parent) {
switch (policy) {
case return_value_policy::take_ownership:
case return_value_policy::automatic:
return eigen_encapsulate<props>(src);
case return_value_policy::move:
return eigen_encapsulate<props>(new CType(std::move(*src)));
case return_value_policy::copy:
return eigen_array_cast<props>(*src);
case return_value_policy::reference:
case return_value_policy::automatic_reference:
return eigen_ref_array<props>(*src);
case return_value_policy::reference_internal:
return eigen_ref_array<props>(*src, parent);
default:
throw cast_error("unhandled return_value_policy: should not happen!");
};
}
public:
// Normal returned non-reference, non-const value:
static handle cast(Type &&src, return_value_policy /* policy */, handle parent) {
return cast_impl(&src, return_value_policy::move, parent);
}
// If you return a non-reference const, we mark the numpy array readonly:
static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) {
return cast_impl(&src, return_value_policy::move, parent);
}
// lvalue reference return; default (automatic) becomes copy
static handle cast(Type &src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
policy = return_value_policy::copy;
return cast_impl(&src, policy, parent);
}
// const lvalue reference return; default (automatic) becomes copy
static handle cast(const Type &src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
policy = return_value_policy::copy;
return cast(&src, policy, parent);
}
// non-const pointer return
static handle cast(Type *src, return_value_policy policy, handle parent) {
return cast_impl(src, policy, parent);
}
// const pointer return
static handle cast(const Type *src, return_value_policy policy, handle parent) {
return cast_impl(src, policy, parent);
}
static constexpr auto name = props::descriptor;
operator Type*() { return &value; }
operator Type&() { return value; }
operator Type&&() && { return std::move(value); }
template <typename T> using cast_op_type = movable_cast_op_type<T>;
private:
Type value;
};
// Eigen Ref/Map classes have slightly different policy requirements, meaning we don't want to force
// `move` when a Ref/Map rvalue is returned; we treat Ref<> sort of like a pointer (we care about
// the underlying data, not the outer shell).
template <typename Return>
struct return_value_policy_override<Return, enable_if_t<is_eigen_dense_map<Return>::value>> {
static return_value_policy policy(return_value_policy p) { return p; }
};
// Base class for casting reference/map/block/etc. objects back to python.
template <typename MapType> struct eigen_map_caster {
private:
using props = EigenProps<MapType>;
public:
// Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has
// to stay around), but we'll allow it under the assumption that you know what you're doing (and
// have an appropriate keep_alive in place). We return a numpy array pointing directly at the
// ref's data (The numpy array ends up read-only if the ref was to a const matrix type.) Note
// that this means you need to ensure you don't destroy the object in some other way (e.g. with
// an appropriate keep_alive, or with a reference to a statically allocated matrix).
static handle cast(const MapType &src, return_value_policy policy, handle parent) {
switch (policy) {
case return_value_policy::copy:
return eigen_array_cast<props>(src);
case return_value_policy::reference_internal:
return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value);
case return_value_policy::reference:
case return_value_policy::automatic:
case return_value_policy::automatic_reference:
return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value);
default:
// move, take_ownership don't make any sense for a ref/map:
pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type");
}
}
static constexpr auto name = props::descriptor;
// Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
// types but not bound arguments). We still provide them (with an explicitly delete) so that
// you end up here if you try anyway.
bool load(handle, bool) = delete;
operator MapType() = delete;
template <typename> using cast_op_type = MapType;
};
// We can return any map-like object (but can only load Refs, specialized next):
template <typename Type> struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>>
: eigen_map_caster<Type> {};
// Loader for Ref<...> arguments. See the documentation for info on how to make this work without
// copying (it requires some extra effort in many cases).
template <typename PlainObjectType, typename StrideType>
struct type_caster<
Eigen::Ref<PlainObjectType, 0, StrideType>,
enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>
> : public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
private:
using Type = Eigen::Ref<PlainObjectType, 0, StrideType>;
using props = EigenProps<Type>;
using Scalar = typename props::Scalar;
using MapType = Eigen::Map<PlainObjectType, 0, StrideType>;
using Array = array_t<Scalar, array::forcecast |
((props::row_major ? props::inner_stride : props::outer_stride) == 1 ? array::c_style :
(props::row_major ? props::outer_stride : props::inner_stride) == 1 ? array::f_style : 0)>;
static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value;
// Delay construction (these have no default constructor)
std::unique_ptr<MapType> map;
std::unique_ptr<Type> ref;
// Our array. When possible, this is just a numpy array pointing to the source data, but
// sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an incompatible
// layout, or is an array of a type that needs to be converted). Using a numpy temporary
// (rather than an Eigen temporary) saves an extra copy when we need both type conversion and
// storage order conversion. (Note that we refuse to use this temporary copy when loading an
// argument for a Ref<M> with M non-const, i.e. a read-write reference).
Array copy_or_ref;
public:
bool load(handle src, bool convert) {
// First check whether what we have is already an array of the right type. If not, we can't
// avoid a copy (because the copy is also going to do type conversion).
bool need_copy = !isinstance<Array>(src);
EigenConformable<props::row_major> fits;
if (!need_copy) {
// We don't need a converting copy, but we also need to check whether the strides are
// compatible with the Ref's stride requirements
Array aref = reinterpret_borrow<Array>(src);
if (aref && (!need_writeable || aref.writeable())) {
fits = props::conformable(aref);
if (!fits) return false; // Incompatible dimensions
if (!fits.template stride_compatible<props>())
need_copy = true;
else
copy_or_ref = std::move(aref);
}
else {
need_copy = true;
}
}
if (need_copy) {
// We need to copy: If we need a mutable reference, or we're not supposed to convert
// (either because we're in the no-convert overload pass, or because we're explicitly
// instructed not to copy (via `py::arg().noconvert()`) we have to fail loading.
if (!convert || need_writeable) return false;
Array copy = Array::ensure(src);
if (!copy) return false;
fits = props::conformable(copy);
if (!fits || !fits.template stride_compatible<props>())
return false;
copy_or_ref = std::move(copy);
loader_life_support::add_patient(copy_or_ref);
}
ref.reset();
map.reset(new MapType(data(copy_or_ref), fits.rows, fits.cols, make_stride(fits.stride.outer(), fits.stride.inner())));
ref.reset(new Type(*map));
return true;
}
operator Type*() { return ref.get(); }
operator Type&() { return *ref; }
template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
private:
template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0>
Scalar *data(Array &a) { return a.mutable_data(); }
template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0>
const Scalar *data(Array &a) { return a.data(); }
// Attempt to figure out a constructor of `Stride` that will work.
// If both strides are fixed, use a default constructor:
template <typename S> using stride_ctor_default = bool_constant<
S::InnerStrideAtCompileTime != Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
std::is_default_constructible<S>::value>;
// Otherwise, if there is a two-index constructor, assume it is (outer,inner) like
// Eigen::Stride, and use it:
template <typename S> using stride_ctor_dual = bool_constant<
!stride_ctor_default<S>::value && std::is_constructible<S, EigenIndex, EigenIndex>::value>;
// Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use
// it (passing whichever stride is dynamic).
template <typename S> using stride_ctor_outer = bool_constant<
!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value &&
S::OuterStrideAtCompileTime == Eigen::Dynamic && S::InnerStrideAtCompileTime != Eigen::Dynamic &&
std::is_constructible<S, EigenIndex>::value>;
template <typename S> using stride_ctor_inner = bool_constant<
!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value &&
S::InnerStrideAtCompileTime == Eigen::Dynamic && S::OuterStrideAtCompileTime != Eigen::Dynamic &&
std::is_constructible<S, EigenIndex>::value>;
template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0>
static S make_stride(EigenIndex, EigenIndex) { return S(); }
template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0>
static S make_stride(EigenIndex outer, EigenIndex inner) { return S(outer, inner); }
template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0>
static S make_stride(EigenIndex outer, EigenIndex) { return S(outer); }
template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0>
static S make_stride(EigenIndex, EigenIndex inner) { return S(inner); }
};
// type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not
// EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout).
// load() is not supported, but we can cast them into the python domain by first copying to a
// regular Eigen::Matrix, then casting that.
template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> {
protected:
using Matrix = Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>;
using props = EigenProps<Matrix>;
public:
static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
handle h = eigen_encapsulate<props>(new Matrix(src));
return h;
}
static handle cast(const Type *src, return_value_policy policy, handle parent) { return cast(*src, policy, parent); }
static constexpr auto name = props::descriptor;
// Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
// types but not bound arguments). We still provide them (with an explicitly delete) so that
// you end up here if you try anyway.
bool load(handle, bool) = delete;
operator Type() = delete;
template <typename> using cast_op_type = Type;
};
template<typename Type>
struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
typedef typename Type::Scalar Scalar;
typedef remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())> StorageIndex;
typedef typename Type::Index Index;
static constexpr bool rowMajor = Type::IsRowMajor;
bool load(handle src, bool) {
if (!src)
return false;
auto obj = reinterpret_borrow<object>(src);
object sparse_module = module::import("scipy.sparse");
object matrix_type = sparse_module.attr(
rowMajor ? "csr_matrix" : "csc_matrix");
if (!obj.get_type().is(matrix_type)) {
try {
obj = matrix_type(obj);
} catch (const error_already_set &) {
return false;
}
}
auto values = array_t<Scalar>((object) obj.attr("data"));
auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices"));
auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr"));
auto shape = pybind11::tuple((pybind11::object) obj.attr("shape"));
auto nnz = obj.attr("nnz").cast<Index>();
if (!values || !innerIndices || !outerIndices)
return false;
value = Eigen::MappedSparseMatrix<Scalar, Type::Flags, StorageIndex>(
shape[0].cast<Index>(), shape[1].cast<Index>(), nnz,
outerIndices.mutable_data(), innerIndices.mutable_data(), values.mutable_data());
return true;
}
static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
const_cast<Type&>(src).makeCompressed();
object matrix_type = module::import("scipy.sparse").attr(
rowMajor ? "csr_matrix" : "csc_matrix");
array data(src.nonZeros(), src.valuePtr());
array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr());
array innerIndices(src.nonZeros(), src.innerIndexPtr());
return matrix_type(
std::make_tuple(data, innerIndices, outerIndices),
std::make_pair(src.rows(), src.cols())
).release();
}
PYBIND11_TYPE_CASTER(Type, _<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[", "scipy.sparse.csc_matrix[")
+ npy_format_descriptor<Scalar>::name + _("]"));
};
NAMESPACE_END(detail)
NAMESPACE_END(PYBIND11_NAMESPACE)
#if defined(__GNUG__) || defined(__clang__)
# pragma GCC diagnostic pop
#elif defined(_MSC_VER)
# pragma warning(pop)
#endif

View File

@ -0,0 +1,194 @@
/*
pybind11/embed.h: Support for embedding the interpreter
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include "eval.h"
#if defined(PYPY_VERSION)
# error Embedding the interpreter is not supported with PyPy
#endif
#if PY_MAJOR_VERSION >= 3
# define PYBIND11_EMBEDDED_MODULE_IMPL(name) \
extern "C" PyObject *pybind11_init_impl_##name() { \
return pybind11_init_wrapper_##name(); \
}
#else
# define PYBIND11_EMBEDDED_MODULE_IMPL(name) \
extern "C" void pybind11_init_impl_##name() { \
pybind11_init_wrapper_##name(); \
}
#endif
/** \rst
Add a new module to the table of builtins for the interpreter. Must be
defined in global scope. The first macro parameter is the name of the
module (without quotes). The second parameter is the variable which will
be used as the interface to add functions and classes to the module.
.. code-block:: cpp
PYBIND11_EMBEDDED_MODULE(example, m) {
// ... initialize functions and classes here
m.def("foo", []() {
return "Hello, World!";
});
}
\endrst */
#define PYBIND11_EMBEDDED_MODULE(name, variable) \
static void PYBIND11_CONCAT(pybind11_init_, name)(pybind11::module &); \
static PyObject PYBIND11_CONCAT(*pybind11_init_wrapper_, name)() { \
auto m = pybind11::module(PYBIND11_TOSTRING(name)); \
try { \
PYBIND11_CONCAT(pybind11_init_, name)(m); \
return m.ptr(); \
} catch (pybind11::error_already_set &e) { \
PyErr_SetString(PyExc_ImportError, e.what()); \
return nullptr; \
} catch (const std::exception &e) { \
PyErr_SetString(PyExc_ImportError, e.what()); \
return nullptr; \
} \
} \
PYBIND11_EMBEDDED_MODULE_IMPL(name) \
pybind11::detail::embedded_module name(PYBIND11_TOSTRING(name), \
PYBIND11_CONCAT(pybind11_init_impl_, name)); \
void PYBIND11_CONCAT(pybind11_init_, name)(pybind11::module &variable)
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
/// Python 2.7/3.x compatible version of `PyImport_AppendInittab` and error checks.
struct embedded_module {
#if PY_MAJOR_VERSION >= 3
using init_t = PyObject *(*)();
#else
using init_t = void (*)();
#endif
embedded_module(const char *name, init_t init) {
if (Py_IsInitialized())
pybind11_fail("Can't add new modules after the interpreter has been initialized");
auto result = PyImport_AppendInittab(name, init);
if (result == -1)
pybind11_fail("Insufficient memory to add a new module");
}
};
NAMESPACE_END(detail)
/** \rst
Initialize the Python interpreter. No other pybind11 or CPython API functions can be
called before this is done; with the exception of `PYBIND11_EMBEDDED_MODULE`. The
optional parameter can be used to skip the registration of signal handlers (see the
Python documentation for details). Calling this function again after the interpreter
has already been initialized is a fatal error.
\endrst */
inline void initialize_interpreter(bool init_signal_handlers = true) {
if (Py_IsInitialized())
pybind11_fail("The interpreter is already running");
Py_InitializeEx(init_signal_handlers ? 1 : 0);
// Make .py files in the working directory available by default
module::import("sys").attr("path").cast<list>().append(".");
}
/** \rst
Shut down the Python interpreter. No pybind11 or CPython API functions can be called
after this. In addition, pybind11 objects must not outlive the interpreter:
.. code-block:: cpp
{ // BAD
py::initialize_interpreter();
auto hello = py::str("Hello, World!");
py::finalize_interpreter();
} // <-- BOOM, hello's destructor is called after interpreter shutdown
{ // GOOD
py::initialize_interpreter();
{ // scoped
auto hello = py::str("Hello, World!");
} // <-- OK, hello is cleaned up properly
py::finalize_interpreter();
}
{ // BETTER
py::scoped_interpreter guard{};
auto hello = py::str("Hello, World!");
}
.. warning::
The interpreter can be restarted by calling `initialize_interpreter` again.
Modules created using pybind11 can be safely re-initialized. However, Python
itself cannot completely unload binary extension modules and there are several
caveats with regard to interpreter restarting. All the details can be found
in the CPython documentation. In short, not all interpreter memory may be
freed, either due to reference cycles or user-created global data.
\endrst */
inline void finalize_interpreter() {
handle builtins(PyEval_GetBuiltins());
const char *id = PYBIND11_INTERNALS_ID;
// Get the internals pointer (without creating it if it doesn't exist). It's possible for the
// internals to be created during Py_Finalize() (e.g. if a py::capsule calls `get_internals()`
// during destruction), so we get the pointer-pointer here and check it after Py_Finalize().
detail::internals **internals_ptr_ptr = &detail::get_internals_ptr();
// It could also be stashed in builtins, so look there too:
if (builtins.contains(id) && isinstance<capsule>(builtins[id]))
internals_ptr_ptr = capsule(builtins[id]);
Py_Finalize();
if (internals_ptr_ptr) {
delete *internals_ptr_ptr;
*internals_ptr_ptr = nullptr;
}
}
/** \rst
Scope guard version of `initialize_interpreter` and `finalize_interpreter`.
This a move-only guard and only a single instance can exist.
.. code-block:: cpp
#include <pybind11/embed.h>
int main() {
py::scoped_interpreter guard{};
py::print(Hello, World!);
} // <-- interpreter shutdown
\endrst */
class scoped_interpreter {
public:
scoped_interpreter(bool init_signal_handlers = true) {
initialize_interpreter(init_signal_handlers);
}
scoped_interpreter(const scoped_interpreter &) = delete;
scoped_interpreter(scoped_interpreter &&other) noexcept { other.is_valid = false; }
scoped_interpreter &operator=(const scoped_interpreter &) = delete;
scoped_interpreter &operator=(scoped_interpreter &&) = delete;
~scoped_interpreter() {
if (is_valid)
finalize_interpreter();
}
private:
bool is_valid = true;
};
NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,117 @@
/*
pybind11/exec.h: Support for evaluating Python expressions and statements
from strings and files
Copyright (c) 2016 Klemens Morgenstern <klemens.morgenstern@ed-chemnitz.de> and
Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
enum eval_mode {
/// Evaluate a string containing an isolated expression
eval_expr,
/// Evaluate a string containing a single statement. Returns \c none
eval_single_statement,
/// Evaluate a string containing a sequence of statement. Returns \c none
eval_statements
};
template <eval_mode mode = eval_expr>
object eval(str expr, object global = globals(), object local = object()) {
if (!local)
local = global;
/* PyRun_String does not accept a PyObject / encoding specifier,
this seems to be the only alternative */
std::string buffer = "# -*- coding: utf-8 -*-\n" + (std::string) expr;
int start;
switch (mode) {
case eval_expr: start = Py_eval_input; break;
case eval_single_statement: start = Py_single_input; break;
case eval_statements: start = Py_file_input; break;
default: pybind11_fail("invalid evaluation mode");
}
PyObject *result = PyRun_String(buffer.c_str(), start, global.ptr(), local.ptr());
if (!result)
throw error_already_set();
return reinterpret_steal<object>(result);
}
template <eval_mode mode = eval_expr, size_t N>
object eval(const char (&s)[N], object global = globals(), object local = object()) {
/* Support raw string literals by removing common leading whitespace */
auto expr = (s[0] == '\n') ? str(module::import("textwrap").attr("dedent")(s))
: str(s);
return eval<mode>(expr, global, local);
}
inline void exec(str expr, object global = globals(), object local = object()) {
eval<eval_statements>(expr, global, local);
}
template <size_t N>
void exec(const char (&s)[N], object global = globals(), object local = object()) {
eval<eval_statements>(s, global, local);
}
template <eval_mode mode = eval_statements>
object eval_file(str fname, object global = globals(), object local = object()) {
if (!local)
local = global;
int start;
switch (mode) {
case eval_expr: start = Py_eval_input; break;
case eval_single_statement: start = Py_single_input; break;
case eval_statements: start = Py_file_input; break;
default: pybind11_fail("invalid evaluation mode");
}
int closeFile = 1;
std::string fname_str = (std::string) fname;
#if PY_VERSION_HEX >= 0x03040000
FILE *f = _Py_fopen_obj(fname.ptr(), "r");
#elif PY_VERSION_HEX >= 0x03000000
FILE *f = _Py_fopen(fname.ptr(), "r");
#else
/* No unicode support in open() :( */
auto fobj = reinterpret_steal<object>(PyFile_FromString(
const_cast<char *>(fname_str.c_str()),
const_cast<char*>("r")));
FILE *f = nullptr;
if (fobj)
f = PyFile_AsFile(fobj.ptr());
closeFile = 0;
#endif
if (!f) {
PyErr_Clear();
pybind11_fail("File \"" + fname_str + "\" could not be opened!");
}
#if PY_VERSION_HEX < 0x03000000 && defined(PYPY_VERSION)
PyObject *result = PyRun_File(f, fname_str.c_str(), start, global.ptr(),
local.ptr());
(void) closeFile;
#else
PyObject *result = PyRun_FileEx(f, fname_str.c_str(), start, global.ptr(),
local.ptr(), closeFile);
#endif
if (!result)
throw error_already_set();
return reinterpret_steal<object>(result);
}
NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,83 @@
/*
pybind11/functional.h: std::function<> support
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <functional>
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
template <typename Return, typename... Args>
struct type_caster<std::function<Return(Args...)>> {
using type = std::function<Return(Args...)>;
using retval_type = conditional_t<std::is_same<Return, void>::value, void_type, Return>;
using function_type = Return (*) (Args...);
public:
bool load(handle src, bool convert) {
if (src.is_none()) {
// Defer accepting None to other overloads (if we aren't in convert mode):
if (!convert) return false;
return true;
}
if (!isinstance<function>(src))
return false;
auto func = reinterpret_borrow<function>(src);
/*
When passing a C++ function as an argument to another C++
function via Python, every function call would normally involve
a full C++ -> Python -> C++ roundtrip, which can be prohibitive.
Here, we try to at least detect the case where the function is
stateless (i.e. function pointer or lambda function without
captured variables), in which case the roundtrip can be avoided.
*/
if (auto cfunc = func.cpp_function()) {
auto c = reinterpret_borrow<capsule>(PyCFunction_GET_SELF(cfunc.ptr()));
auto rec = (function_record *) c;
if (rec && rec->is_stateless &&
same_type(typeid(function_type), *reinterpret_cast<const std::type_info *>(rec->data[1]))) {
struct capture { function_type f; };
value = ((capture *) &rec->data)->f;
return true;
}
}
value = [func](Args... args) -> Return {
gil_scoped_acquire acq;
object retval(func(std::forward<Args>(args)...));
/* Visual studio 2015 parser issue: need parentheses around this expression */
return (retval.template cast<Return>());
};
return true;
}
template <typename Func>
static handle cast(Func &&f_, return_value_policy policy, handle /* parent */) {
if (!f_)
return none().inc_ref();
auto result = f_.template target<function_type>();
if (result)
return cpp_function(*result, policy).release();
else
return cpp_function(std::forward<Func>(f_), policy).release();
}
PYBIND11_TYPE_CASTER(type, _("Callable[[") + concat(make_caster<Args>::name...) + _("], ")
+ make_caster<retval_type>::name + _("]"));
};
NAMESPACE_END(detail)
NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,200 @@
/*
pybind11/iostream.h -- Tools to assist with redirecting cout and cerr to Python
Copyright (c) 2017 Henry F. Schreiner
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <streambuf>
#include <ostream>
#include <string>
#include <memory>
#include <iostream>
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
// Buffer that writes to Python instead of C++
class pythonbuf : public std::streambuf {
private:
using traits_type = std::streambuf::traits_type;
char d_buffer[1024];
object pywrite;
object pyflush;
int overflow(int c) {
if (!traits_type::eq_int_type(c, traits_type::eof())) {
*pptr() = traits_type::to_char_type(c);
pbump(1);
}
return sync() ? traits_type::not_eof(c) : traits_type::eof();
}
int sync() {
if (pbase() != pptr()) {
// This subtraction cannot be negative, so dropping the sign
str line(pbase(), static_cast<size_t>(pptr() - pbase()));
pywrite(line);
pyflush();
setp(pbase(), epptr());
}
return 0;
}
public:
pythonbuf(object pyostream)
: pywrite(pyostream.attr("write")),
pyflush(pyostream.attr("flush")) {
setp(d_buffer, d_buffer + sizeof(d_buffer) - 1);
}
/// Sync before destroy
~pythonbuf() {
sync();
}
};
NAMESPACE_END(detail)
/** \rst
This a move-only guard that redirects output.
.. code-block:: cpp
#include <pybind11/iostream.h>
...
{
py::scoped_ostream_redirect output;
std::cout << "Hello, World!"; // Python stdout
} // <-- return std::cout to normal
You can explicitly pass the c++ stream and the python object,
for example to guard stderr instead.
.. code-block:: cpp
{
py::scoped_ostream_redirect output{std::cerr, py::module::import("sys").attr("stderr")};
std::cerr << "Hello, World!";
}
\endrst */
class scoped_ostream_redirect {
protected:
std::streambuf *old;
std::ostream &costream;
detail::pythonbuf buffer;
public:
scoped_ostream_redirect(
std::ostream &costream = std::cout,
object pyostream = module::import("sys").attr("stdout"))
: costream(costream), buffer(pyostream) {
old = costream.rdbuf(&buffer);
}
~scoped_ostream_redirect() {
costream.rdbuf(old);
}
scoped_ostream_redirect(const scoped_ostream_redirect &) = delete;
scoped_ostream_redirect(scoped_ostream_redirect &&other) = default;
scoped_ostream_redirect &operator=(const scoped_ostream_redirect &) = delete;
scoped_ostream_redirect &operator=(scoped_ostream_redirect &&) = delete;
};
/** \rst
Like `scoped_ostream_redirect`, but redirects cerr by default. This class
is provided primary to make ``py::call_guard`` easier to make.
.. code-block:: cpp
m.def("noisy_func", &noisy_func,
py::call_guard<scoped_ostream_redirect,
scoped_estream_redirect>());
\endrst */
class scoped_estream_redirect : public scoped_ostream_redirect {
public:
scoped_estream_redirect(
std::ostream &costream = std::cerr,
object pyostream = module::import("sys").attr("stderr"))
: scoped_ostream_redirect(costream,pyostream) {}
};
NAMESPACE_BEGIN(detail)
// Class to redirect output as a context manager. C++ backend.
class OstreamRedirect {
bool do_stdout_;
bool do_stderr_;
std::unique_ptr<scoped_ostream_redirect> redirect_stdout;
std::unique_ptr<scoped_estream_redirect> redirect_stderr;
public:
OstreamRedirect(bool do_stdout = true, bool do_stderr = true)
: do_stdout_(do_stdout), do_stderr_(do_stderr) {}
void enter() {
if (do_stdout_)
redirect_stdout.reset(new scoped_ostream_redirect());
if (do_stderr_)
redirect_stderr.reset(new scoped_estream_redirect());
}
void exit() {
redirect_stdout.reset();
redirect_stderr.reset();
}
};
NAMESPACE_END(detail)
/** \rst
This is a helper function to add a C++ redirect context manager to Python
instead of using a C++ guard. To use it, add the following to your binding code:
.. code-block:: cpp
#include <pybind11/iostream.h>
...
py::add_ostream_redirect(m, "ostream_redirect");
You now have a Python context manager that redirects your output:
.. code-block:: python
with m.ostream_redirect():
m.print_to_cout_function()
This manager can optionally be told which streams to operate on:
.. code-block:: python
with m.ostream_redirect(stdout=true, stderr=true):
m.noisy_function_with_error_printing()
\endrst */
inline class_<detail::OstreamRedirect> add_ostream_redirect(module m, std::string name = "ostream_redirect") {
return class_<detail::OstreamRedirect>(m, name.c_str(), module_local())
.def(init<bool,bool>(), arg("stdout")=true, arg("stderr")=true)
.def("__enter__", &detail::OstreamRedirect::enter)
.def("__exit__", [](detail::OstreamRedirect &self, args) { self.exit(); });
}
NAMESPACE_END(PYBIND11_NAMESPACE)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,168 @@
/*
pybind11/operator.h: Metatemplates for operator overloading
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#if defined(__clang__) && !defined(__INTEL_COMPILER)
# pragma clang diagnostic ignored "-Wunsequenced" // multiple unsequenced modifications to 'self' (when using def(py::self OP Type()))
#elif defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
/// Enumeration with all supported operator types
enum op_id : int {
op_add, op_sub, op_mul, op_div, op_mod, op_divmod, op_pow, op_lshift,
op_rshift, op_and, op_xor, op_or, op_neg, op_pos, op_abs, op_invert,
op_int, op_long, op_float, op_str, op_cmp, op_gt, op_ge, op_lt, op_le,
op_eq, op_ne, op_iadd, op_isub, op_imul, op_idiv, op_imod, op_ilshift,
op_irshift, op_iand, op_ixor, op_ior, op_complex, op_bool, op_nonzero,
op_repr, op_truediv, op_itruediv, op_hash
};
enum op_type : int {
op_l, /* base type on left */
op_r, /* base type on right */
op_u /* unary operator */
};
struct self_t { };
static const self_t self = self_t();
/// Type for an unused type slot
struct undefined_t { };
/// Don't warn about an unused variable
inline self_t __self() { return self; }
/// base template of operator implementations
template <op_id, op_type, typename B, typename L, typename R> struct op_impl { };
/// Operator implementation generator
template <op_id id, op_type ot, typename L, typename R> struct op_ {
template <typename Class, typename... Extra> void execute(Class &cl, const Extra&... extra) const {
using Base = typename Class::type;
using L_type = conditional_t<std::is_same<L, self_t>::value, Base, L>;
using R_type = conditional_t<std::is_same<R, self_t>::value, Base, R>;
using op = op_impl<id, ot, Base, L_type, R_type>;
cl.def(op::name(), &op::execute, is_operator(), extra...);
#if PY_MAJOR_VERSION < 3
if (id == op_truediv || id == op_itruediv)
cl.def(id == op_itruediv ? "__idiv__" : ot == op_l ? "__div__" : "__rdiv__",
&op::execute, is_operator(), extra...);
#endif
}
template <typename Class, typename... Extra> void execute_cast(Class &cl, const Extra&... extra) const {
using Base = typename Class::type;
using L_type = conditional_t<std::is_same<L, self_t>::value, Base, L>;
using R_type = conditional_t<std::is_same<R, self_t>::value, Base, R>;
using op = op_impl<id, ot, Base, L_type, R_type>;
cl.def(op::name(), &op::execute_cast, is_operator(), extra...);
#if PY_MAJOR_VERSION < 3
if (id == op_truediv || id == op_itruediv)
cl.def(id == op_itruediv ? "__idiv__" : ot == op_l ? "__div__" : "__rdiv__",
&op::execute, is_operator(), extra...);
#endif
}
};
#define PYBIND11_BINARY_OPERATOR(id, rid, op, expr) \
template <typename B, typename L, typename R> struct op_impl<op_##id, op_l, B, L, R> { \
static char const* name() { return "__" #id "__"; } \
static auto execute(const L &l, const R &r) -> decltype(expr) { return (expr); } \
static B execute_cast(const L &l, const R &r) { return B(expr); } \
}; \
template <typename B, typename L, typename R> struct op_impl<op_##id, op_r, B, L, R> { \
static char const* name() { return "__" #rid "__"; } \
static auto execute(const R &r, const L &l) -> decltype(expr) { return (expr); } \
static B execute_cast(const R &r, const L &l) { return B(expr); } \
}; \
inline op_<op_##id, op_l, self_t, self_t> op(const self_t &, const self_t &) { \
return op_<op_##id, op_l, self_t, self_t>(); \
} \
template <typename T> op_<op_##id, op_l, self_t, T> op(const self_t &, const T &) { \
return op_<op_##id, op_l, self_t, T>(); \
} \
template <typename T> op_<op_##id, op_r, T, self_t> op(const T &, const self_t &) { \
return op_<op_##id, op_r, T, self_t>(); \
}
#define PYBIND11_INPLACE_OPERATOR(id, op, expr) \
template <typename B, typename L, typename R> struct op_impl<op_##id, op_l, B, L, R> { \
static char const* name() { return "__" #id "__"; } \
static auto execute(L &l, const R &r) -> decltype(expr) { return expr; } \
static B execute_cast(L &l, const R &r) { return B(expr); } \
}; \
template <typename T> op_<op_##id, op_l, self_t, T> op(const self_t &, const T &) { \
return op_<op_##id, op_l, self_t, T>(); \
}
#define PYBIND11_UNARY_OPERATOR(id, op, expr) \
template <typename B, typename L> struct op_impl<op_##id, op_u, B, L, undefined_t> { \
static char const* name() { return "__" #id "__"; } \
static auto execute(const L &l) -> decltype(expr) { return expr; } \
static B execute_cast(const L &l) { return B(expr); } \
}; \
inline op_<op_##id, op_u, self_t, undefined_t> op(const self_t &) { \
return op_<op_##id, op_u, self_t, undefined_t>(); \
}
PYBIND11_BINARY_OPERATOR(sub, rsub, operator-, l - r)
PYBIND11_BINARY_OPERATOR(add, radd, operator+, l + r)
PYBIND11_BINARY_OPERATOR(mul, rmul, operator*, l * r)
PYBIND11_BINARY_OPERATOR(truediv, rtruediv, operator/, l / r)
PYBIND11_BINARY_OPERATOR(mod, rmod, operator%, l % r)
PYBIND11_BINARY_OPERATOR(lshift, rlshift, operator<<, l << r)
PYBIND11_BINARY_OPERATOR(rshift, rrshift, operator>>, l >> r)
PYBIND11_BINARY_OPERATOR(and, rand, operator&, l & r)
PYBIND11_BINARY_OPERATOR(xor, rxor, operator^, l ^ r)
PYBIND11_BINARY_OPERATOR(eq, eq, operator==, l == r)
PYBIND11_BINARY_OPERATOR(ne, ne, operator!=, l != r)
PYBIND11_BINARY_OPERATOR(or, ror, operator|, l | r)
PYBIND11_BINARY_OPERATOR(gt, lt, operator>, l > r)
PYBIND11_BINARY_OPERATOR(ge, le, operator>=, l >= r)
PYBIND11_BINARY_OPERATOR(lt, gt, operator<, l < r)
PYBIND11_BINARY_OPERATOR(le, ge, operator<=, l <= r)
//PYBIND11_BINARY_OPERATOR(pow, rpow, pow, std::pow(l, r))
PYBIND11_INPLACE_OPERATOR(iadd, operator+=, l += r)
PYBIND11_INPLACE_OPERATOR(isub, operator-=, l -= r)
PYBIND11_INPLACE_OPERATOR(imul, operator*=, l *= r)
PYBIND11_INPLACE_OPERATOR(itruediv, operator/=, l /= r)
PYBIND11_INPLACE_OPERATOR(imod, operator%=, l %= r)
PYBIND11_INPLACE_OPERATOR(ilshift, operator<<=, l <<= r)
PYBIND11_INPLACE_OPERATOR(irshift, operator>>=, l >>= r)
PYBIND11_INPLACE_OPERATOR(iand, operator&=, l &= r)
PYBIND11_INPLACE_OPERATOR(ixor, operator^=, l ^= r)
PYBIND11_INPLACE_OPERATOR(ior, operator|=, l |= r)
PYBIND11_UNARY_OPERATOR(neg, operator-, -l)
PYBIND11_UNARY_OPERATOR(pos, operator+, +l)
PYBIND11_UNARY_OPERATOR(abs, abs, std::abs(l))
PYBIND11_UNARY_OPERATOR(hash, hash, std::hash<L>()(l))
PYBIND11_UNARY_OPERATOR(invert, operator~, (~l))
PYBIND11_UNARY_OPERATOR(bool, operator!, !!l)
PYBIND11_UNARY_OPERATOR(int, int_, (int) l)
PYBIND11_UNARY_OPERATOR(float, float_, (double) l)
#undef PYBIND11_BINARY_OPERATOR
#undef PYBIND11_INPLACE_OPERATOR
#undef PYBIND11_UNARY_OPERATOR
NAMESPACE_END(detail)
using detail::self;
NAMESPACE_END(PYBIND11_NAMESPACE)
#if defined(_MSC_VER)
# pragma warning(pop)
#endif

View File

@ -0,0 +1,65 @@
/*
pybind11/options.h: global settings that are configurable at runtime.
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "detail/common.h"
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
class options {
public:
// Default RAII constructor, which leaves settings as they currently are.
options() : previous_state(global_state()) {}
// Class is non-copyable.
options(const options&) = delete;
options& operator=(const options&) = delete;
// Destructor, which restores settings that were in effect before.
~options() {
global_state() = previous_state;
}
// Setter methods (affect the global state):
options& disable_user_defined_docstrings() & { global_state().show_user_defined_docstrings = false; return *this; }
options& enable_user_defined_docstrings() & { global_state().show_user_defined_docstrings = true; return *this; }
options& disable_function_signatures() & { global_state().show_function_signatures = false; return *this; }
options& enable_function_signatures() & { global_state().show_function_signatures = true; return *this; }
// Getter methods (return the global state):
static bool show_user_defined_docstrings() { return global_state().show_user_defined_docstrings; }
static bool show_function_signatures() { return global_state().show_function_signatures; }
// This type is not meant to be allocated on the heap.
void* operator new(size_t) = delete;
private:
struct state {
bool show_user_defined_docstrings = true; //< Include user-supplied texts in docstrings.
bool show_function_signatures = true; //< Include auto-generated function signatures in docstrings.
};
static state &global_state() {
static state instance;
return instance;
}
state previous_state;
};
NAMESPACE_END(PYBIND11_NAMESPACE)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,369 @@
/*
pybind11/stl.h: Transparent conversion for STL data types
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <set>
#include <unordered_set>
#include <map>
#include <unordered_map>
#include <iostream>
#include <list>
#include <valarray>
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#endif
#ifdef __has_include
// std::optional (but including it in c++14 mode isn't allowed)
# if defined(PYBIND11_CPP17) && __has_include(<optional>)
# include <optional>
# define PYBIND11_HAS_OPTIONAL 1
# endif
// std::experimental::optional (but not allowed in c++11 mode)
# if defined(PYBIND11_CPP14) && __has_include(<experimental/optional>)
# include <experimental/optional>
# define PYBIND11_HAS_EXP_OPTIONAL 1
# endif
// std::variant
# if defined(PYBIND11_CPP17) && __has_include(<variant>)
# include <variant>
# define PYBIND11_HAS_VARIANT 1
# endif
#elif defined(_MSC_VER) && defined(PYBIND11_CPP17)
# include <optional>
# include <variant>
# define PYBIND11_HAS_OPTIONAL 1
# define PYBIND11_HAS_VARIANT 1
#endif
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
/// Extracts an const lvalue reference or rvalue reference for U based on the type of T (e.g. for
/// forwarding a container element). Typically used indirect via forwarded_type(), below.
template <typename T, typename U>
using forwarded_type = conditional_t<
std::is_lvalue_reference<T>::value, remove_reference_t<U> &, remove_reference_t<U> &&>;
/// Forwards a value U as rvalue or lvalue according to whether T is rvalue or lvalue; typically
/// used for forwarding a container's elements.
template <typename T, typename U>
forwarded_type<T, U> forward_like(U &&u) {
return std::forward<detail::forwarded_type<T, U>>(std::forward<U>(u));
}
template <typename Type, typename Key> struct set_caster {
using type = Type;
using key_conv = make_caster<Key>;
bool load(handle src, bool convert) {
if (!isinstance<pybind11::set>(src))
return false;
auto s = reinterpret_borrow<pybind11::set>(src);
value.clear();
for (auto entry : s) {
key_conv conv;
if (!conv.load(entry, convert))
return false;
value.insert(cast_op<Key &&>(std::move(conv)));
}
return true;
}
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
pybind11::set s;
for (auto &&value : src) {
auto value_ = reinterpret_steal<object>(key_conv::cast(forward_like<T>(value), policy, parent));
if (!value_ || !s.add(value_))
return handle();
}
return s.release();
}
PYBIND11_TYPE_CASTER(type, _("Set[") + key_conv::name + _("]"));
};
template <typename Type, typename Key, typename Value> struct map_caster {
using key_conv = make_caster<Key>;
using value_conv = make_caster<Value>;
bool load(handle src, bool convert) {
if (!isinstance<dict>(src))
return false;
auto d = reinterpret_borrow<dict>(src);
value.clear();
for (auto it : d) {
key_conv kconv;
value_conv vconv;
if (!kconv.load(it.first.ptr(), convert) ||
!vconv.load(it.second.ptr(), convert))
return false;
value.emplace(cast_op<Key &&>(std::move(kconv)), cast_op<Value &&>(std::move(vconv)));
}
return true;
}
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
dict d;
for (auto &&kv : src) {
auto key = reinterpret_steal<object>(key_conv::cast(forward_like<T>(kv.first), policy, parent));
auto value = reinterpret_steal<object>(value_conv::cast(forward_like<T>(kv.second), policy, parent));
if (!key || !value)
return handle();
d[key] = value;
}
return d.release();
}
PYBIND11_TYPE_CASTER(Type, _("Dict[") + key_conv::name + _(", ") + value_conv::name + _("]"));
};
template <typename Type, typename Value> struct list_caster {
using value_conv = make_caster<Value>;
bool load(handle src, bool convert) {
if (!isinstance<sequence>(src))
return false;
auto s = reinterpret_borrow<sequence>(src);
value.clear();
reserve_maybe(s, &value);
for (auto it : s) {
value_conv conv;
if (!conv.load(it, convert))
return false;
value.push_back(cast_op<Value &&>(std::move(conv)));
}
return true;
}
private:
template <typename T = Type,
enable_if_t<std::is_same<decltype(std::declval<T>().reserve(0)), void>::value, int> = 0>
void reserve_maybe(sequence s, Type *) { value.reserve(s.size()); }
void reserve_maybe(sequence, void *) { }
public:
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
list l(src.size());
size_t index = 0;
for (auto &&value : src) {
auto value_ = reinterpret_steal<object>(value_conv::cast(forward_like<T>(value), policy, parent));
if (!value_)
return handle();
PyList_SET_ITEM(l.ptr(), (ssize_t) index++, value_.release().ptr()); // steals a reference
}
return l.release();
}
PYBIND11_TYPE_CASTER(Type, _("List[") + value_conv::name + _("]"));
};
template <typename Type, typename Alloc> struct type_caster<std::vector<Type, Alloc>>
: list_caster<std::vector<Type, Alloc>, Type> { };
template <typename Type, typename Alloc> struct type_caster<std::list<Type, Alloc>>
: list_caster<std::list<Type, Alloc>, Type> { };
template <typename ArrayType, typename Value, bool Resizable, size_t Size = 0> struct array_caster {
using value_conv = make_caster<Value>;
private:
template <bool R = Resizable>
bool require_size(enable_if_t<R, size_t> size) {
if (value.size() != size)
value.resize(size);
return true;
}
template <bool R = Resizable>
bool require_size(enable_if_t<!R, size_t> size) {
return size == Size;
}
public:
bool load(handle src, bool convert) {
if (!isinstance<list>(src))
return false;
auto l = reinterpret_borrow<list>(src);
if (!require_size(l.size()))
return false;
size_t ctr = 0;
for (auto it : l) {
value_conv conv;
if (!conv.load(it, convert))
return false;
value[ctr++] = cast_op<Value &&>(std::move(conv));
}
return true;
}
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
list l(src.size());
size_t index = 0;
for (auto &&value : src) {
auto value_ = reinterpret_steal<object>(value_conv::cast(forward_like<T>(value), policy, parent));
if (!value_)
return handle();
PyList_SET_ITEM(l.ptr(), (ssize_t) index++, value_.release().ptr()); // steals a reference
}
return l.release();
}
PYBIND11_TYPE_CASTER(ArrayType, _("List[") + value_conv::name + _<Resizable>(_(""), _("[") + _<Size>() + _("]")) + _("]"));
};
template <typename Type, size_t Size> struct type_caster<std::array<Type, Size>>
: array_caster<std::array<Type, Size>, Type, false, Size> { };
template <typename Type> struct type_caster<std::valarray<Type>>
: array_caster<std::valarray<Type>, Type, true> { };
template <typename Key, typename Compare, typename Alloc> struct type_caster<std::set<Key, Compare, Alloc>>
: set_caster<std::set<Key, Compare, Alloc>, Key> { };
template <typename Key, typename Hash, typename Equal, typename Alloc> struct type_caster<std::unordered_set<Key, Hash, Equal, Alloc>>
: set_caster<std::unordered_set<Key, Hash, Equal, Alloc>, Key> { };
template <typename Key, typename Value, typename Compare, typename Alloc> struct type_caster<std::map<Key, Value, Compare, Alloc>>
: map_caster<std::map<Key, Value, Compare, Alloc>, Key, Value> { };
template <typename Key, typename Value, typename Hash, typename Equal, typename Alloc> struct type_caster<std::unordered_map<Key, Value, Hash, Equal, Alloc>>
: map_caster<std::unordered_map<Key, Value, Hash, Equal, Alloc>, Key, Value> { };
// This type caster is intended to be used for std::optional and std::experimental::optional
template<typename T> struct optional_caster {
using value_conv = make_caster<typename T::value_type>;
template <typename T_>
static handle cast(T_ &&src, return_value_policy policy, handle parent) {
if (!src)
return none().inc_ref();
return value_conv::cast(*std::forward<T_>(src), policy, parent);
}
bool load(handle src, bool convert) {
if (!src) {
return false;
} else if (src.is_none()) {
return true; // default-constructed value is already empty
}
value_conv inner_caster;
if (!inner_caster.load(src, convert))
return false;
value.emplace(cast_op<typename T::value_type &&>(std::move(inner_caster)));
return true;
}
PYBIND11_TYPE_CASTER(T, _("Optional[") + value_conv::name + _("]"));
};
#if PYBIND11_HAS_OPTIONAL
template<typename T> struct type_caster<std::optional<T>>
: public optional_caster<std::optional<T>> {};
template<> struct type_caster<std::nullopt_t>
: public void_caster<std::nullopt_t> {};
#endif
#if PYBIND11_HAS_EXP_OPTIONAL
template<typename T> struct type_caster<std::experimental::optional<T>>
: public optional_caster<std::experimental::optional<T>> {};
template<> struct type_caster<std::experimental::nullopt_t>
: public void_caster<std::experimental::nullopt_t> {};
#endif
/// Visit a variant and cast any found type to Python
struct variant_caster_visitor {
return_value_policy policy;
handle parent;
using result_type = handle; // required by boost::variant in C++11
template <typename T>
result_type operator()(T &&src) const {
return make_caster<T>::cast(std::forward<T>(src), policy, parent);
}
};
/// Helper class which abstracts away variant's `visit` function. `std::variant` and similar
/// `namespace::variant` types which provide a `namespace::visit()` function are handled here
/// automatically using argument-dependent lookup. Users can provide specializations for other
/// variant-like classes, e.g. `boost::variant` and `boost::apply_visitor`.
template <template<typename...> class Variant>
struct visit_helper {
template <typename... Args>
static auto call(Args &&...args) -> decltype(visit(std::forward<Args>(args)...)) {
return visit(std::forward<Args>(args)...);
}
};
/// Generic variant caster
template <typename Variant> struct variant_caster;
template <template<typename...> class V, typename... Ts>
struct variant_caster<V<Ts...>> {
static_assert(sizeof...(Ts) > 0, "Variant must consist of at least one alternative.");
template <typename U, typename... Us>
bool load_alternative(handle src, bool convert, type_list<U, Us...>) {
auto caster = make_caster<U>();
if (caster.load(src, convert)) {
value = cast_op<U>(caster);
return true;
}
return load_alternative(src, convert, type_list<Us...>{});
}
bool load_alternative(handle, bool, type_list<>) { return false; }
bool load(handle src, bool convert) {
// Do a first pass without conversions to improve constructor resolution.
// E.g. `py::int_(1).cast<variant<double, int>>()` needs to fill the `int`
// slot of the variant. Without two-pass loading `double` would be filled
// because it appears first and a conversion is possible.
if (convert && load_alternative(src, false, type_list<Ts...>{}))
return true;
return load_alternative(src, convert, type_list<Ts...>{});
}
template <typename Variant>
static handle cast(Variant &&src, return_value_policy policy, handle parent) {
return visit_helper<V>::call(variant_caster_visitor{policy, parent},
std::forward<Variant>(src));
}
using Type = V<Ts...>;
PYBIND11_TYPE_CASTER(Type, _("Union[") + detail::concat(make_caster<Ts>::name...) + _("]"));
};
#if PYBIND11_HAS_VARIANT
template <typename... Ts>
struct type_caster<std::variant<Ts...>> : variant_caster<std::variant<Ts...>> { };
#endif
NAMESPACE_END(detail)
inline std::ostream &operator<<(std::ostream &os, const handle &obj) {
os << (std::string) str(obj);
return os;
}
NAMESPACE_END(PYBIND11_NAMESPACE)
#if defined(_MSC_VER)
#pragma warning(pop)
#endif

View File

@ -0,0 +1,599 @@
/*
pybind11/std_bind.h: Binding generators for STL data types
Copyright (c) 2016 Sergey Lyskov and Wenzel Jakob
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "detail/common.h"
#include "operators.h"
#include <algorithm>
#include <sstream>
NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)
/* SFINAE helper class used by 'is_comparable */
template <typename T> struct container_traits {
template <typename T2> static std::true_type test_comparable(decltype(std::declval<const T2 &>() == std::declval<const T2 &>())*);
template <typename T2> static std::false_type test_comparable(...);
template <typename T2> static std::true_type test_value(typename T2::value_type *);
template <typename T2> static std::false_type test_value(...);
template <typename T2> static std::true_type test_pair(typename T2::first_type *, typename T2::second_type *);
template <typename T2> static std::false_type test_pair(...);
static constexpr const bool is_comparable = std::is_same<std::true_type, decltype(test_comparable<T>(nullptr))>::value;
static constexpr const bool is_pair = std::is_same<std::true_type, decltype(test_pair<T>(nullptr, nullptr))>::value;
static constexpr const bool is_vector = std::is_same<std::true_type, decltype(test_value<T>(nullptr))>::value;
static constexpr const bool is_element = !is_pair && !is_vector;
};
/* Default: is_comparable -> std::false_type */
template <typename T, typename SFINAE = void>
struct is_comparable : std::false_type { };
/* For non-map data structures, check whether operator== can be instantiated */
template <typename T>
struct is_comparable<
T, enable_if_t<container_traits<T>::is_element &&
container_traits<T>::is_comparable>>
: std::true_type { };
/* For a vector/map data structure, recursively check the value type (which is std::pair for maps) */
template <typename T>
struct is_comparable<T, enable_if_t<container_traits<T>::is_vector>> {
static constexpr const bool value =
is_comparable<typename T::value_type>::value;
};
/* For pairs, recursively check the two data types */
template <typename T>
struct is_comparable<T, enable_if_t<container_traits<T>::is_pair>> {
static constexpr const bool value =
is_comparable<typename T::first_type>::value &&
is_comparable<typename T::second_type>::value;
};
/* Fallback functions */
template <typename, typename, typename... Args> void vector_if_copy_constructible(const Args &...) { }
template <typename, typename, typename... Args> void vector_if_equal_operator(const Args &...) { }
template <typename, typename, typename... Args> void vector_if_insertion_operator(const Args &...) { }
template <typename, typename, typename... Args> void vector_modifiers(const Args &...) { }
template<typename Vector, typename Class_>
void vector_if_copy_constructible(enable_if_t<is_copy_constructible<Vector>::value, Class_> &cl) {
cl.def(init<const Vector &>(), "Copy constructor");
}
template<typename Vector, typename Class_>
void vector_if_equal_operator(enable_if_t<is_comparable<Vector>::value, Class_> &cl) {
using T = typename Vector::value_type;
cl.def(self == self);
cl.def(self != self);
cl.def("count",
[](const Vector &v, const T &x) {
return std::count(v.begin(), v.end(), x);
},
arg("x"),
"Return the number of times ``x`` appears in the list"
);
cl.def("remove", [](Vector &v, const T &x) {
auto p = std::find(v.begin(), v.end(), x);
if (p != v.end())
v.erase(p);
else
throw value_error();
},
arg("x"),
"Remove the first item from the list whose value is x. "
"It is an error if there is no such item."
);
cl.def("__contains__",
[](const Vector &v, const T &x) {
return std::find(v.begin(), v.end(), x) != v.end();
},
arg("x"),
"Return true the container contains ``x``"
);
}
// Vector modifiers -- requires a copyable vector_type:
// (Technically, some of these (pop and __delitem__) don't actually require copyability, but it seems
// silly to allow deletion but not insertion, so include them here too.)
template <typename Vector, typename Class_>
void vector_modifiers(enable_if_t<is_copy_constructible<typename Vector::value_type>::value, Class_> &cl) {
using T = typename Vector::value_type;
using SizeType = typename Vector::size_type;
using DiffType = typename Vector::difference_type;
cl.def("append",
[](Vector &v, const T &value) { v.push_back(value); },
arg("x"),
"Add an item to the end of the list");
cl.def(init([](iterable it) {
auto v = std::unique_ptr<Vector>(new Vector());
v->reserve(len(it));
for (handle h : it)
v->push_back(h.cast<T>());
return v.release();
}));
cl.def("extend",
[](Vector &v, const Vector &src) {
v.insert(v.end(), src.begin(), src.end());
},
arg("L"),
"Extend the list by appending all the items in the given list"
);
cl.def("insert",
[](Vector &v, SizeType i, const T &x) {
if (i > v.size())
throw index_error();
v.insert(v.begin() + (DiffType) i, x);
},
arg("i") , arg("x"),
"Insert an item at a given position."
);
cl.def("pop",
[](Vector &v) {
if (v.empty())
throw index_error();
T t = v.back();
v.pop_back();
return t;
},
"Remove and return the last item"
);
cl.def("pop",
[](Vector &v, SizeType i) {
if (i >= v.size())
throw index_error();
T t = v[i];
v.erase(v.begin() + (DiffType) i);
return t;
},
arg("i"),
"Remove and return the item at index ``i``"
);
cl.def("__setitem__",
[](Vector &v, SizeType i, const T &t) {
if (i >= v.size())
throw index_error();
v[i] = t;
}
);
/// Slicing protocol
cl.def("__getitem__",
[](const Vector &v, slice slice) -> Vector * {
size_t start, stop, step, slicelength;
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
throw error_already_set();
Vector *seq = new Vector();
seq->reserve((size_t) slicelength);
for (size_t i=0; i<slicelength; ++i) {
seq->push_back(v[start]);
start += step;
}
return seq;
},
arg("s"),
"Retrieve list elements using a slice object"
);
cl.def("__setitem__",
[](Vector &v, slice slice, const Vector &value) {
size_t start, stop, step, slicelength;
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
throw error_already_set();
if (slicelength != value.size())
throw std::runtime_error("Left and right hand size of slice assignment have different sizes!");
for (size_t i=0; i<slicelength; ++i) {
v[start] = value[i];
start += step;
}
},
"Assign list elements using a slice object"
);
cl.def("__delitem__",
[](Vector &v, SizeType i) {
if (i >= v.size())
throw index_error();
v.erase(v.begin() + DiffType(i));
},
"Delete the list elements at index ``i``"
);
cl.def("__delitem__",
[](Vector &v, slice slice) {
size_t start, stop, step, slicelength;
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
throw error_already_set();
if (step == 1 && false) {
v.erase(v.begin() + (DiffType) start, v.begin() + DiffType(start + slicelength));
} else {
for (size_t i = 0; i < slicelength; ++i) {
v.erase(v.begin() + DiffType(start));
start += step - 1;
}
}
},
"Delete list elements using a slice object"
);
}
// If the type has an operator[] that doesn't return a reference (most notably std::vector<bool>),
// we have to access by copying; otherwise we return by reference.
template <typename Vector> using vector_needs_copy = negation<
std::is_same<decltype(std::declval<Vector>()[typename Vector::size_type()]), typename Vector::value_type &>>;
// The usual case: access and iterate by reference
template <typename Vector, typename Class_>
void vector_accessor(enable_if_t<!vector_needs_copy<Vector>::value, Class_> &cl) {
using T = typename Vector::value_type;
using SizeType = typename Vector::size_type;
using ItType = typename Vector::iterator;
cl.def("__getitem__",
[](Vector &v, SizeType i) -> T & {
if (i >= v.size())
throw index_error();
return v[i];
},
return_value_policy::reference_internal // ref + keepalive
);
cl.def("__iter__",
[](Vector &v) {
return make_iterator<
return_value_policy::reference_internal, ItType, ItType, T&>(
v.begin(), v.end());
},
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
}
// The case for special objects, like std::vector<bool>, that have to be returned-by-copy:
template <typename Vector, typename Class_>
void vector_accessor(enable_if_t<vector_needs_copy<Vector>::value, Class_> &cl) {
using T = typename Vector::value_type;
using SizeType = typename Vector::size_type;
using ItType = typename Vector::iterator;
cl.def("__getitem__",
[](const Vector &v, SizeType i) -> T {
if (i >= v.size())
throw index_error();
return v[i];
}
);
cl.def("__iter__",
[](Vector &v) {
return make_iterator<
return_value_policy::copy, ItType, ItType, T>(
v.begin(), v.end());
},
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
}
template <typename Vector, typename Class_> auto vector_if_insertion_operator(Class_ &cl, std::string const &name)
-> decltype(std::declval<std::ostream&>() << std::declval<typename Vector::value_type>(), void()) {
using size_type = typename Vector::size_type;
cl.def("__repr__",
[name](Vector &v) {
std::ostringstream s;
s << name << '[';
for (size_type i=0; i < v.size(); ++i) {
s << v[i];
if (i != v.size() - 1)
s << ", ";
}
s << ']';
return s.str();
},
"Return the canonical string representation of this list."
);
}
// Provide the buffer interface for vectors if we have data() and we have a format for it
// GCC seems to have "void std::vector<bool>::data()" - doing SFINAE on the existence of data() is insufficient, we need to check it returns an appropriate pointer
template <typename Vector, typename = void>
struct vector_has_data_and_format : std::false_type {};
template <typename Vector>
struct vector_has_data_and_format<Vector, enable_if_t<std::is_same<decltype(format_descriptor<typename Vector::value_type>::format(), std::declval<Vector>().data()), typename Vector::value_type*>::value>> : std::true_type {};
// Add the buffer interface to a vector
template <typename Vector, typename Class_, typename... Args>
enable_if_t<detail::any_of<std::is_same<Args, buffer_protocol>...>::value>
vector_buffer(Class_& cl) {
using T = typename Vector::value_type;
static_assert(vector_has_data_and_format<Vector>::value, "There is not an appropriate format descriptor for this vector");
// numpy.h declares this for arbitrary types, but it may raise an exception and crash hard at runtime if PYBIND11_NUMPY_DTYPE hasn't been called, so check here
format_descriptor<T>::format();
cl.def_buffer([](Vector& v) -> buffer_info {
return buffer_info(v.data(), static_cast<ssize_t>(sizeof(T)), format_descriptor<T>::format(), 1, {v.size()}, {sizeof(T)});
});
cl.def(init([](buffer buf) {
auto info = buf.request();
if (info.ndim != 1 || info.strides[0] % static_cast<ssize_t>(sizeof(T)))
throw type_error("Only valid 1D buffers can be copied to a vector");
if (!detail::compare_buffer_info<T>::compare(info) || (ssize_t) sizeof(T) != info.itemsize)
throw type_error("Format mismatch (Python: " + info.format + " C++: " + format_descriptor<T>::format() + ")");
auto vec = std::unique_ptr<Vector>(new Vector());
vec->reserve((size_t) info.shape[0]);
T *p = static_cast<T*>(info.ptr);
ssize_t step = info.strides[0] / static_cast<ssize_t>(sizeof(T));
T *end = p + info.shape[0] * step;
for (; p != end; p += step)
vec->push_back(*p);
return vec.release();
}));
return;
}
template <typename Vector, typename Class_, typename... Args>
enable_if_t<!detail::any_of<std::is_same<Args, buffer_protocol>...>::value> vector_buffer(Class_&) {}
NAMESPACE_END(detail)
//
// std::vector
//
template <typename Vector, typename holder_type = std::unique_ptr<Vector>, typename... Args>
class_<Vector, holder_type> bind_vector(handle scope, std::string const &name, Args&&... args) {
using Class_ = class_<Vector, holder_type>;
// If the value_type is unregistered (e.g. a converting type) or is itself registered
// module-local then make the vector binding module-local as well:
using vtype = typename Vector::value_type;
auto vtype_info = detail::get_type_info(typeid(vtype));
bool local = !vtype_info || vtype_info->module_local;
Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);
// Declare the buffer interface if a buffer_protocol() is passed in
detail::vector_buffer<Vector, Class_, Args...>(cl);
cl.def(init<>());
// Register copy constructor (if possible)
detail::vector_if_copy_constructible<Vector, Class_>(cl);
// Register comparison-related operators and functions (if possible)
detail::vector_if_equal_operator<Vector, Class_>(cl);
// Register stream insertion operator (if possible)
detail::vector_if_insertion_operator<Vector, Class_>(cl, name);
// Modifiers require copyable vector value type
detail::vector_modifiers<Vector, Class_>(cl);
// Accessor and iterator; return by value if copyable, otherwise we return by ref + keep-alive
detail::vector_accessor<Vector, Class_>(cl);
cl.def("__bool__",
[](const Vector &v) -> bool {
return !v.empty();
},
"Check whether the list is nonempty"
);
cl.def("__len__", &Vector::size);
#if 0
// C++ style functions deprecated, leaving it here as an example
cl.def(init<size_type>());
cl.def("resize",
(void (Vector::*) (size_type count)) & Vector::resize,
"changes the number of elements stored");
cl.def("erase",
[](Vector &v, SizeType i) {
if (i >= v.size())
throw index_error();
v.erase(v.begin() + i);
}, "erases element at index ``i``");
cl.def("empty", &Vector::empty, "checks whether the container is empty");
cl.def("size", &Vector::size, "returns the number of elements");
cl.def("push_back", (void (Vector::*)(const T&)) &Vector::push_back, "adds an element to the end");
cl.def("pop_back", &Vector::pop_back, "removes the last element");
cl.def("max_size", &Vector::max_size, "returns the maximum possible number of elements");
cl.def("reserve", &Vector::reserve, "reserves storage");
cl.def("capacity", &Vector::capacity, "returns the number of elements that can be held in currently allocated storage");
cl.def("shrink_to_fit", &Vector::shrink_to_fit, "reduces memory usage by freeing unused memory");
cl.def("clear", &Vector::clear, "clears the contents");
cl.def("swap", &Vector::swap, "swaps the contents");
cl.def("front", [](Vector &v) {
if (v.size()) return v.front();
else throw index_error();
}, "access the first element");
cl.def("back", [](Vector &v) {
if (v.size()) return v.back();
else throw index_error();
}, "access the last element ");
#endif
return cl;
}
//
// std::map, std::unordered_map
//
NAMESPACE_BEGIN(detail)
/* Fallback functions */
template <typename, typename, typename... Args> void map_if_insertion_operator(const Args &...) { }
template <typename, typename, typename... Args> void map_assignment(const Args &...) { }
// Map assignment when copy-assignable: just copy the value
template <typename Map, typename Class_>
void map_assignment(enable_if_t<std::is_copy_assignable<typename Map::mapped_type>::value, Class_> &cl) {
using KeyType = typename Map::key_type;
using MappedType = typename Map::mapped_type;
cl.def("__setitem__",
[](Map &m, const KeyType &k, const MappedType &v) {
auto it = m.find(k);
if (it != m.end()) it->second = v;
else m.emplace(k, v);
}
);
}
// Not copy-assignable, but still copy-constructible: we can update the value by erasing and reinserting
template<typename Map, typename Class_>
void map_assignment(enable_if_t<
!std::is_copy_assignable<typename Map::mapped_type>::value &&
is_copy_constructible<typename Map::mapped_type>::value,
Class_> &cl) {
using KeyType = typename Map::key_type;
using MappedType = typename Map::mapped_type;
cl.def("__setitem__",
[](Map &m, const KeyType &k, const MappedType &v) {
// We can't use m[k] = v; because value type might not be default constructable
auto r = m.emplace(k, v);
if (!r.second) {
// value type is not copy assignable so the only way to insert it is to erase it first...
m.erase(r.first);
m.emplace(k, v);
}
}
);
}
template <typename Map, typename Class_> auto map_if_insertion_operator(Class_ &cl, std::string const &name)
-> decltype(std::declval<std::ostream&>() << std::declval<typename Map::key_type>() << std::declval<typename Map::mapped_type>(), void()) {
cl.def("__repr__",
[name](Map &m) {
std::ostringstream s;
s << name << '{';
bool f = false;
for (auto const &kv : m) {
if (f)
s << ", ";
s << kv.first << ": " << kv.second;
f = true;
}
s << '}';
return s.str();
},
"Return the canonical string representation of this map."
);
}
NAMESPACE_END(detail)
template <typename Map, typename holder_type = std::unique_ptr<Map>, typename... Args>
class_<Map, holder_type> bind_map(handle scope, const std::string &name, Args&&... args) {
using KeyType = typename Map::key_type;
using MappedType = typename Map::mapped_type;
using Class_ = class_<Map, holder_type>;
// If either type is a non-module-local bound type then make the map binding non-local as well;
// otherwise (e.g. both types are either module-local or converting) the map will be
// module-local.
auto tinfo = detail::get_type_info(typeid(MappedType));
bool local = !tinfo || tinfo->module_local;
if (local) {
tinfo = detail::get_type_info(typeid(KeyType));
local = !tinfo || tinfo->module_local;
}
Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);
cl.def(init<>());
// Register stream insertion operator (if possible)
detail::map_if_insertion_operator<Map, Class_>(cl, name);
cl.def("__bool__",
[](const Map &m) -> bool { return !m.empty(); },
"Check whether the map is nonempty"
);
cl.def("__iter__",
[](Map &m) { return make_key_iterator(m.begin(), m.end()); },
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
cl.def("items",
[](Map &m) { return make_iterator(m.begin(), m.end()); },
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
cl.def("__getitem__",
[](Map &m, const KeyType &k) -> MappedType & {
auto it = m.find(k);
if (it == m.end())
throw key_error();
return it->second;
},
return_value_policy::reference_internal // ref + keepalive
);
// Assignment provided only if the type is copyable
detail::map_assignment<Map, Class_>(cl);
cl.def("__delitem__",
[](Map &m, const KeyType &k) {
auto it = m.find(k);
if (it == m.end())
throw key_error();
return m.erase(it);
}
);
cl.def("__len__", &Map::size);
return cl;
}
NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -0,0 +1,57 @@
# - Find the Catch test framework or download it (single header)
#
# This is a quick module for internal use. It assumes that Catch is
# REQUIRED and that a minimum version is provided (not EXACT). If
# a suitable version isn't found locally, the single header file
# will be downloaded and placed in the build dir: PROJECT_BINARY_DIR.
#
# This code sets the following variables:
# CATCH_INCLUDE_DIR - path to catch.hpp
# CATCH_VERSION - version number
if(NOT Catch_FIND_VERSION)
message(FATAL_ERROR "A version number must be specified.")
elseif(Catch_FIND_REQUIRED)
message(FATAL_ERROR "This module assumes Catch is not required.")
elseif(Catch_FIND_VERSION_EXACT)
message(FATAL_ERROR "Exact version numbers are not supported, only minimum.")
endif()
# Extract the version number from catch.hpp
function(_get_catch_version)
file(STRINGS "${CATCH_INCLUDE_DIR}/catch.hpp" version_line REGEX "Catch v.*" LIMIT_COUNT 1)
if(version_line MATCHES "Catch v([0-9]+)\\.([0-9]+)\\.([0-9]+)")
set(CATCH_VERSION "${CMAKE_MATCH_1}.${CMAKE_MATCH_2}.${CMAKE_MATCH_3}" PARENT_SCOPE)
endif()
endfunction()
# Download the single-header version of Catch
function(_download_catch version destination_dir)
message(STATUS "Downloading catch v${version}...")
set(url https://github.com/philsquared/Catch/releases/download/v${version}/catch.hpp)
file(DOWNLOAD ${url} "${destination_dir}/catch.hpp" STATUS status)
list(GET status 0 error)
if(error)
message(FATAL_ERROR "Could not download ${url}")
endif()
set(CATCH_INCLUDE_DIR "${destination_dir}" CACHE INTERNAL "")
endfunction()
# Look for catch locally
find_path(CATCH_INCLUDE_DIR NAMES catch.hpp PATH_SUFFIXES catch)
if(CATCH_INCLUDE_DIR)
_get_catch_version()
endif()
# Download the header if it wasn't found or if it's outdated
if(NOT CATCH_VERSION OR CATCH_VERSION VERSION_LESS ${Catch_FIND_VERSION})
if(DOWNLOAD_CATCH)
_download_catch(${Catch_FIND_VERSION} "${PROJECT_BINARY_DIR}/catch/")
_get_catch_version()
else()
set(CATCH_FOUND FALSE)
return()
endif()
endif()
set(CATCH_FOUND TRUE)

View File

@ -0,0 +1,81 @@
# - Try to find Eigen3 lib
#
# This module supports requiring a minimum version, e.g. you can do
# find_package(Eigen3 3.1.2)
# to require version 3.1.2 or newer of Eigen3.
#
# Once done this will define
#
# EIGEN3_FOUND - system has eigen lib with correct version
# EIGEN3_INCLUDE_DIR - the eigen include directory
# EIGEN3_VERSION - eigen version
# Copyright (c) 2006, 2007 Montel Laurent, <montel@kde.org>
# Copyright (c) 2008, 2009 Gael Guennebaud, <g.gael@free.fr>
# Copyright (c) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
# Redistribution and use is allowed according to the terms of the 2-clause BSD license.
if(NOT Eigen3_FIND_VERSION)
if(NOT Eigen3_FIND_VERSION_MAJOR)
set(Eigen3_FIND_VERSION_MAJOR 2)
endif(NOT Eigen3_FIND_VERSION_MAJOR)
if(NOT Eigen3_FIND_VERSION_MINOR)
set(Eigen3_FIND_VERSION_MINOR 91)
endif(NOT Eigen3_FIND_VERSION_MINOR)
if(NOT Eigen3_FIND_VERSION_PATCH)
set(Eigen3_FIND_VERSION_PATCH 0)
endif(NOT Eigen3_FIND_VERSION_PATCH)
set(Eigen3_FIND_VERSION "${Eigen3_FIND_VERSION_MAJOR}.${Eigen3_FIND_VERSION_MINOR}.${Eigen3_FIND_VERSION_PATCH}")
endif(NOT Eigen3_FIND_VERSION)
macro(_eigen3_check_version)
file(READ "${EIGEN3_INCLUDE_DIR}/Eigen/src/Core/util/Macros.h" _eigen3_version_header)
string(REGEX MATCH "define[ \t]+EIGEN_WORLD_VERSION[ \t]+([0-9]+)" _eigen3_world_version_match "${_eigen3_version_header}")
set(EIGEN3_WORLD_VERSION "${CMAKE_MATCH_1}")
string(REGEX MATCH "define[ \t]+EIGEN_MAJOR_VERSION[ \t]+([0-9]+)" _eigen3_major_version_match "${_eigen3_version_header}")
set(EIGEN3_MAJOR_VERSION "${CMAKE_MATCH_1}")
string(REGEX MATCH "define[ \t]+EIGEN_MINOR_VERSION[ \t]+([0-9]+)" _eigen3_minor_version_match "${_eigen3_version_header}")
set(EIGEN3_MINOR_VERSION "${CMAKE_MATCH_1}")
set(EIGEN3_VERSION ${EIGEN3_WORLD_VERSION}.${EIGEN3_MAJOR_VERSION}.${EIGEN3_MINOR_VERSION})
if(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION})
set(EIGEN3_VERSION_OK FALSE)
else(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION})
set(EIGEN3_VERSION_OK TRUE)
endif(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION})
if(NOT EIGEN3_VERSION_OK)
message(STATUS "Eigen3 version ${EIGEN3_VERSION} found in ${EIGEN3_INCLUDE_DIR}, "
"but at least version ${Eigen3_FIND_VERSION} is required")
endif(NOT EIGEN3_VERSION_OK)
endmacro(_eigen3_check_version)
if (EIGEN3_INCLUDE_DIR)
# in cache already
_eigen3_check_version()
set(EIGEN3_FOUND ${EIGEN3_VERSION_OK})
else (EIGEN3_INCLUDE_DIR)
find_path(EIGEN3_INCLUDE_DIR NAMES signature_of_eigen3_matrix_library
PATHS
${CMAKE_INSTALL_PREFIX}/include
${KDE4_INCLUDE_DIR}
PATH_SUFFIXES eigen3 eigen
)
if(EIGEN3_INCLUDE_DIR)
_eigen3_check_version()
endif(EIGEN3_INCLUDE_DIR)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(Eigen3 DEFAULT_MSG EIGEN3_INCLUDE_DIR EIGEN3_VERSION_OK)
mark_as_advanced(EIGEN3_INCLUDE_DIR)
endif(EIGEN3_INCLUDE_DIR)

View File

@ -0,0 +1,195 @@
# - Find python libraries
# This module finds the libraries corresponding to the Python interpeter
# FindPythonInterp provides.
# This code sets the following variables:
#
# PYTHONLIBS_FOUND - have the Python libs been found
# PYTHON_PREFIX - path to the Python installation
# PYTHON_LIBRARIES - path to the python library
# PYTHON_INCLUDE_DIRS - path to where Python.h is found
# PYTHON_MODULE_EXTENSION - lib extension, e.g. '.so' or '.pyd'
# PYTHON_MODULE_PREFIX - lib name prefix: usually an empty string
# PYTHON_SITE_PACKAGES - path to installation site-packages
# PYTHON_IS_DEBUG - whether the Python interpreter is a debug build
#
# Thanks to talljimbo for the patch adding the 'LDVERSION' config
# variable usage.
#=============================================================================
# Copyright 2001-2009 Kitware, Inc.
# Copyright 2012 Continuum Analytics, Inc.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the names of Kitware, Inc., the Insight Software Consortium,
# nor the names of their contributors may be used to endorse or promote
# products derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#=============================================================================
# Checking for the extension makes sure that `LibsNew` was found and not just `Libs`.
if(PYTHONLIBS_FOUND AND PYTHON_MODULE_EXTENSION)
return()
endif()
# Use the Python interpreter to find the libs.
if(PythonLibsNew_FIND_REQUIRED)
find_package(PythonInterp ${PythonLibsNew_FIND_VERSION} REQUIRED)
else()
find_package(PythonInterp ${PythonLibsNew_FIND_VERSION})
endif()
if(NOT PYTHONINTERP_FOUND)
set(PYTHONLIBS_FOUND FALSE)
return()
endif()
# According to http://stackoverflow.com/questions/646518/python-how-to-detect-debug-interpreter
# testing whether sys has the gettotalrefcount function is a reliable, cross-platform
# way to detect a CPython debug interpreter.
#
# The library suffix is from the config var LDVERSION sometimes, otherwise
# VERSION. VERSION will typically be like "2.7" on unix, and "27" on windows.
execute_process(COMMAND "${PYTHON_EXECUTABLE}" "-c"
"from distutils import sysconfig as s;import sys;import struct;
print('.'.join(str(v) for v in sys.version_info));
print(sys.prefix);
print(s.get_python_inc(plat_specific=True));
print(s.get_python_lib(plat_specific=True));
print(s.get_config_var('SO'));
print(hasattr(sys, 'gettotalrefcount')+0);
print(struct.calcsize('@P'));
print(s.get_config_var('LDVERSION') or s.get_config_var('VERSION'));
print(s.get_config_var('LIBDIR') or '');
print(s.get_config_var('MULTIARCH') or '');
"
RESULT_VARIABLE _PYTHON_SUCCESS
OUTPUT_VARIABLE _PYTHON_VALUES
ERROR_VARIABLE _PYTHON_ERROR_VALUE)
if(NOT _PYTHON_SUCCESS MATCHES 0)
if(PythonLibsNew_FIND_REQUIRED)
message(FATAL_ERROR
"Python config failure:\n${_PYTHON_ERROR_VALUE}")
endif()
set(PYTHONLIBS_FOUND FALSE)
return()
endif()
# Convert the process output into a list
string(REGEX REPLACE ";" "\\\\;" _PYTHON_VALUES ${_PYTHON_VALUES})
string(REGEX REPLACE "\n" ";" _PYTHON_VALUES ${_PYTHON_VALUES})
list(GET _PYTHON_VALUES 0 _PYTHON_VERSION_LIST)
list(GET _PYTHON_VALUES 1 PYTHON_PREFIX)
list(GET _PYTHON_VALUES 2 PYTHON_INCLUDE_DIR)
list(GET _PYTHON_VALUES 3 PYTHON_SITE_PACKAGES)
list(GET _PYTHON_VALUES 4 PYTHON_MODULE_EXTENSION)
list(GET _PYTHON_VALUES 5 PYTHON_IS_DEBUG)
list(GET _PYTHON_VALUES 6 PYTHON_SIZEOF_VOID_P)
list(GET _PYTHON_VALUES 7 PYTHON_LIBRARY_SUFFIX)
list(GET _PYTHON_VALUES 8 PYTHON_LIBDIR)
list(GET _PYTHON_VALUES 9 PYTHON_MULTIARCH)
# Make sure the Python has the same pointer-size as the chosen compiler
# Skip if CMAKE_SIZEOF_VOID_P is not defined
if(CMAKE_SIZEOF_VOID_P AND (NOT "${PYTHON_SIZEOF_VOID_P}" STREQUAL "${CMAKE_SIZEOF_VOID_P}"))
if(PythonLibsNew_FIND_REQUIRED)
math(EXPR _PYTHON_BITS "${PYTHON_SIZEOF_VOID_P} * 8")
math(EXPR _CMAKE_BITS "${CMAKE_SIZEOF_VOID_P} * 8")
message(FATAL_ERROR
"Python config failure: Python is ${_PYTHON_BITS}-bit, "
"chosen compiler is ${_CMAKE_BITS}-bit")
endif()
set(PYTHONLIBS_FOUND FALSE)
return()
endif()
# The built-in FindPython didn't always give the version numbers
string(REGEX REPLACE "\\." ";" _PYTHON_VERSION_LIST ${_PYTHON_VERSION_LIST})
list(GET _PYTHON_VERSION_LIST 0 PYTHON_VERSION_MAJOR)
list(GET _PYTHON_VERSION_LIST 1 PYTHON_VERSION_MINOR)
list(GET _PYTHON_VERSION_LIST 2 PYTHON_VERSION_PATCH)
# Make sure all directory separators are '/'
string(REGEX REPLACE "\\\\" "/" PYTHON_PREFIX ${PYTHON_PREFIX})
string(REGEX REPLACE "\\\\" "/" PYTHON_INCLUDE_DIR ${PYTHON_INCLUDE_DIR})
string(REGEX REPLACE "\\\\" "/" PYTHON_SITE_PACKAGES ${PYTHON_SITE_PACKAGES})
if(CMAKE_HOST_WIN32)
set(PYTHON_LIBRARY
"${PYTHON_PREFIX}/libs/Python${PYTHON_LIBRARY_SUFFIX}.lib")
# when run in a venv, PYTHON_PREFIX points to it. But the libraries remain in the
# original python installation. They may be found relative to PYTHON_INCLUDE_DIR.
if(NOT EXISTS "${PYTHON_LIBRARY}")
get_filename_component(_PYTHON_ROOT ${PYTHON_INCLUDE_DIR} DIRECTORY)
set(PYTHON_LIBRARY
"${_PYTHON_ROOT}/libs/Python${PYTHON_LIBRARY_SUFFIX}.lib")
endif()
# raise an error if the python libs are still not found.
if(NOT EXISTS "${PYTHON_LIBRARY}")
message(FATAL_ERROR "Python libraries not found")
endif()
else()
if(PYTHON_MULTIARCH)
set(_PYTHON_LIBS_SEARCH "${PYTHON_LIBDIR}/${PYTHON_MULTIARCH}" "${PYTHON_LIBDIR}")
else()
set(_PYTHON_LIBS_SEARCH "${PYTHON_LIBDIR}")
endif()
#message(STATUS "Searching for Python libs in ${_PYTHON_LIBS_SEARCH}")
# Probably this needs to be more involved. It would be nice if the config
# information the python interpreter itself gave us were more complete.
find_library(PYTHON_LIBRARY
NAMES "python${PYTHON_LIBRARY_SUFFIX}"
PATHS ${_PYTHON_LIBS_SEARCH}
NO_DEFAULT_PATH)
# If all else fails, just set the name/version and let the linker figure out the path.
if(NOT PYTHON_LIBRARY)
set(PYTHON_LIBRARY python${PYTHON_LIBRARY_SUFFIX})
endif()
endif()
MARK_AS_ADVANCED(
PYTHON_LIBRARY
PYTHON_INCLUDE_DIR
)
# We use PYTHON_INCLUDE_DIR, PYTHON_LIBRARY and PYTHON_DEBUG_LIBRARY for the
# cache entries because they are meant to specify the location of a single
# library. We now set the variables listed by the documentation for this
# module.
SET(PYTHON_INCLUDE_DIRS "${PYTHON_INCLUDE_DIR}")
SET(PYTHON_LIBRARIES "${PYTHON_LIBRARY}")
SET(PYTHON_DEBUG_LIBRARIES "${PYTHON_DEBUG_LIBRARY}")
find_package_message(PYTHON
"Found PythonLibs: ${PYTHON_LIBRARY}"
"${PYTHON_EXECUTABLE}${PYTHON_VERSION}")
set(PYTHONLIBS_FOUND TRUE)

70
dlib/external/pybind11/tools/check-style.sh vendored Executable file
View File

@ -0,0 +1,70 @@
#!/bin/bash
#
# Script to check include/test code for common pybind11 code style errors.
#
# This script currently checks for
#
# 1. use of tabs instead of spaces
# 2. MSDOS-style CRLF endings
# 3. trailing spaces
# 4. missing space between keyword and parenthesis, e.g.: for(, if(, while(
# 5. Missing space between right parenthesis and brace, e.g. 'for (...){'
# 6. opening brace on its own line. It should always be on the same line as the
# if/while/for/do statement.
#
# Invoke as: tools/check-style.sh
#
check_style_errors=0
IFS=$'\n'
found="$( GREP_COLORS='mt=41' GREP_COLOR='41' grep $'\t' include tests/*.{cpp,py,h} docs/*.rst -rn --color=always )"
if [ -n "$found" ]; then
# The mt=41 sets a red background for matched tabs:
echo -e '\033[31;01mError: found tab characters in the following files:\033[0m'
check_style_errors=1
echo "$found" | sed -e 's/^/ /'
fi
found="$( grep -IUlr $'\r' include tests/*.{cpp,py,h} docs/*.rst --color=always )"
if [ -n "$found" ]; then
echo -e '\033[31;01mError: found CRLF characters in the following files:\033[0m'
check_style_errors=1
echo "$found" | sed -e 's/^/ /'
fi
found="$(GREP_COLORS='mt=41' GREP_COLOR='41' grep '[[:blank:]]\+$' include tests/*.{cpp,py,h} docs/*.rst -rn --color=always )"
if [ -n "$found" ]; then
# The mt=41 sets a red background for matched trailing spaces
echo -e '\033[31;01mError: found trailing spaces in the following files:\033[0m'
check_style_errors=1
echo "$found" | sed -e 's/^/ /'
fi
found="$(grep '\<\(if\|for\|while\|catch\)(\|){' include tests/*.{cpp,h} -rn --color=always)"
if [ -n "$found" ]; then
echo -e '\033[31;01mError: found the following coding style problems:\033[0m'
check_style_errors=1
echo "$found" | sed -e 's/^/ /'
fi
found="$(awk '
function prefix(filename, lineno) {
return " \033[35m" filename "\033[36m:\033[32m" lineno "\033[36m:\033[0m"
}
function mark(pattern, string) { sub(pattern, "\033[01;31m&\033[0m", string); return string }
last && /^\s*{/ {
print prefix(FILENAME, FNR-1) mark("\\)\\s*$", last)
print prefix(FILENAME, FNR) mark("^\\s*{", $0)
last=""
}
{ last = /(if|for|while|catch|switch)\s*\(.*\)\s*$/ ? $0 : "" }
' $(find include -type f) tests/*.{cpp,h} docs/*.rst)"
if [ -n "$found" ]; then
check_style_errors=1
echo -e '\033[31;01mError: braces should occur on the same line as the if/while/.. statement. Found issues in the following files:\033[0m'
echo "$found"
fi
exit $check_style_errors

38
dlib/external/pybind11/tools/libsize.py vendored Normal file
View File

@ -0,0 +1,38 @@
from __future__ import print_function, division
import os
import sys
# Internal build script for generating debugging test .so size.
# Usage:
# python libsize.py file.so save.txt -- displays the size of file.so and, if save.txt exists, compares it to the
# size in it, then overwrites save.txt with the new size for future runs.
if len(sys.argv) != 3:
sys.exit("Invalid arguments: usage: python libsize.py file.so save.txt")
lib = sys.argv[1]
save = sys.argv[2]
if not os.path.exists(lib):
sys.exit("Error: requested file ({}) does not exist".format(lib))
libsize = os.path.getsize(lib)
print("------", os.path.basename(lib), "file size:", libsize, end='')
if os.path.exists(save):
with open(save) as sf:
oldsize = int(sf.readline())
if oldsize > 0:
change = libsize - oldsize
if change == 0:
print(" (no change)")
else:
print(" (change of {:+} bytes = {:+.2%})".format(change, change / oldsize))
else:
print()
with open(save, 'w') as sf:
sf.write(str(libsize))

304
dlib/external/pybind11/tools/mkdoc.py vendored Normal file
View File

@ -0,0 +1,304 @@
#!/usr/bin/env python3
#
# Syntax: mkdoc.py [-I<path> ..] [.. a list of header files ..]
#
# Extract documentation from C++ header files to use it in Python bindings
#
import os
import sys
import platform
import re
import textwrap
from clang import cindex
from clang.cindex import CursorKind
from collections import OrderedDict
from threading import Thread, Semaphore
from multiprocessing import cpu_count
RECURSE_LIST = [
CursorKind.TRANSLATION_UNIT,
CursorKind.NAMESPACE,
CursorKind.CLASS_DECL,
CursorKind.STRUCT_DECL,
CursorKind.ENUM_DECL,
CursorKind.CLASS_TEMPLATE
]
PRINT_LIST = [
CursorKind.CLASS_DECL,
CursorKind.STRUCT_DECL,
CursorKind.ENUM_DECL,
CursorKind.ENUM_CONSTANT_DECL,
CursorKind.CLASS_TEMPLATE,
CursorKind.FUNCTION_DECL,
CursorKind.FUNCTION_TEMPLATE,
CursorKind.CONVERSION_FUNCTION,
CursorKind.CXX_METHOD,
CursorKind.CONSTRUCTOR,
CursorKind.FIELD_DECL
]
CPP_OPERATORS = {
'<=': 'le', '>=': 'ge', '==': 'eq', '!=': 'ne', '[]': 'array',
'+=': 'iadd', '-=': 'isub', '*=': 'imul', '/=': 'idiv', '%=':
'imod', '&=': 'iand', '|=': 'ior', '^=': 'ixor', '<<=': 'ilshift',
'>>=': 'irshift', '++': 'inc', '--': 'dec', '<<': 'lshift', '>>':
'rshift', '&&': 'land', '||': 'lor', '!': 'lnot', '~': 'bnot',
'&': 'band', '|': 'bor', '+': 'add', '-': 'sub', '*': 'mul', '/':
'div', '%': 'mod', '<': 'lt', '>': 'gt', '=': 'assign', '()': 'call'
}
CPP_OPERATORS = OrderedDict(
sorted(CPP_OPERATORS.items(), key=lambda t: -len(t[0])))
job_count = cpu_count()
job_semaphore = Semaphore(job_count)
output = []
def d(s):
return s.decode('utf8')
def sanitize_name(name):
name = re.sub(r'type-parameter-0-([0-9]+)', r'T\1', name)
for k, v in CPP_OPERATORS.items():
name = name.replace('operator%s' % k, 'operator_%s' % v)
name = re.sub('<.*>', '', name)
name = ''.join([ch if ch.isalnum() else '_' for ch in name])
name = re.sub('_$', '', re.sub('_+', '_', name))
return '__doc_' + name
def process_comment(comment):
result = ''
# Remove C++ comment syntax
leading_spaces = float('inf')
for s in comment.expandtabs(tabsize=4).splitlines():
s = s.strip()
if s.startswith('/*'):
s = s[2:].lstrip('*')
elif s.endswith('*/'):
s = s[:-2].rstrip('*')
elif s.startswith('///'):
s = s[3:]
if s.startswith('*'):
s = s[1:]
if len(s) > 0:
leading_spaces = min(leading_spaces, len(s) - len(s.lstrip()))
result += s + '\n'
if leading_spaces != float('inf'):
result2 = ""
for s in result.splitlines():
result2 += s[leading_spaces:] + '\n'
result = result2
# Doxygen tags
cpp_group = '([\w:]+)'
param_group = '([\[\w:\]]+)'
s = result
s = re.sub(r'\\c\s+%s' % cpp_group, r'``\1``', s)
s = re.sub(r'\\a\s+%s' % cpp_group, r'*\1*', s)
s = re.sub(r'\\e\s+%s' % cpp_group, r'*\1*', s)
s = re.sub(r'\\em\s+%s' % cpp_group, r'*\1*', s)
s = re.sub(r'\\b\s+%s' % cpp_group, r'**\1**', s)
s = re.sub(r'\\ingroup\s+%s' % cpp_group, r'', s)
s = re.sub(r'\\param%s?\s+%s' % (param_group, cpp_group),
r'\n\n$Parameter ``\2``:\n\n', s)
s = re.sub(r'\\tparam%s?\s+%s' % (param_group, cpp_group),
r'\n\n$Template parameter ``\2``:\n\n', s)
for in_, out_ in {
'return': 'Returns',
'author': 'Author',
'authors': 'Authors',
'copyright': 'Copyright',
'date': 'Date',
'remark': 'Remark',
'sa': 'See also',
'see': 'See also',
'extends': 'Extends',
'throw': 'Throws',
'throws': 'Throws'
}.items():
s = re.sub(r'\\%s\s*' % in_, r'\n\n$%s:\n\n' % out_, s)
s = re.sub(r'\\details\s*', r'\n\n', s)
s = re.sub(r'\\brief\s*', r'', s)
s = re.sub(r'\\short\s*', r'', s)
s = re.sub(r'\\ref\s*', r'', s)
s = re.sub(r'\\code\s?(.*?)\s?\\endcode',
r"```\n\1\n```\n", s, flags=re.DOTALL)
# HTML/TeX tags
s = re.sub(r'<tt>(.*?)</tt>', r'``\1``', s, flags=re.DOTALL)
s = re.sub(r'<pre>(.*?)</pre>', r"```\n\1\n```\n", s, flags=re.DOTALL)
s = re.sub(r'<em>(.*?)</em>', r'*\1*', s, flags=re.DOTALL)
s = re.sub(r'<b>(.*?)</b>', r'**\1**', s, flags=re.DOTALL)
s = re.sub(r'\\f\$(.*?)\\f\$', r'$\1$', s, flags=re.DOTALL)
s = re.sub(r'<li>', r'\n\n* ', s)
s = re.sub(r'</?ul>', r'', s)
s = re.sub(r'</li>', r'\n\n', s)
s = s.replace('``true``', '``True``')
s = s.replace('``false``', '``False``')
# Re-flow text
wrapper = textwrap.TextWrapper()
wrapper.expand_tabs = True
wrapper.replace_whitespace = True
wrapper.drop_whitespace = True
wrapper.width = 70
wrapper.initial_indent = wrapper.subsequent_indent = ''
result = ''
in_code_segment = False
for x in re.split(r'(```)', s):
if x == '```':
if not in_code_segment:
result += '```\n'
else:
result += '\n```\n\n'
in_code_segment = not in_code_segment
elif in_code_segment:
result += x.strip()
else:
for y in re.split(r'(?: *\n *){2,}', x):
wrapped = wrapper.fill(re.sub(r'\s+', ' ', y).strip())
if len(wrapped) > 0 and wrapped[0] == '$':
result += wrapped[1:] + '\n'
wrapper.initial_indent = \
wrapper.subsequent_indent = ' ' * 4
else:
if len(wrapped) > 0:
result += wrapped + '\n\n'
wrapper.initial_indent = wrapper.subsequent_indent = ''
return result.rstrip().lstrip('\n')
def extract(filename, node, prefix):
if not (node.location.file is None or
os.path.samefile(d(node.location.file.name), filename)):
return 0
if node.kind in RECURSE_LIST:
sub_prefix = prefix
if node.kind != CursorKind.TRANSLATION_UNIT:
if len(sub_prefix) > 0:
sub_prefix += '_'
sub_prefix += d(node.spelling)
for i in node.get_children():
extract(filename, i, sub_prefix)
if node.kind in PRINT_LIST:
comment = d(node.raw_comment) if node.raw_comment is not None else ''
comment = process_comment(comment)
sub_prefix = prefix
if len(sub_prefix) > 0:
sub_prefix += '_'
if len(node.spelling) > 0:
name = sanitize_name(sub_prefix + d(node.spelling))
global output
output.append((name, filename, comment))
class ExtractionThread(Thread):
def __init__(self, filename, parameters):
Thread.__init__(self)
self.filename = filename
self.parameters = parameters
job_semaphore.acquire()
def run(self):
print('Processing "%s" ..' % self.filename, file=sys.stderr)
try:
index = cindex.Index(
cindex.conf.lib.clang_createIndex(False, True))
tu = index.parse(self.filename, self.parameters)
extract(self.filename, tu.cursor, '')
finally:
job_semaphore.release()
if __name__ == '__main__':
parameters = ['-x', 'c++', '-std=c++11']
filenames = []
if platform.system() == 'Darwin':
dev_path = '/Applications/Xcode.app/Contents/Developer/'
lib_dir = dev_path + 'Toolchains/XcodeDefault.xctoolchain/usr/lib/'
sdk_dir = dev_path + 'Platforms/MacOSX.platform/Developer/SDKs'
libclang = lib_dir + 'libclang.dylib'
if os.path.exists(libclang):
cindex.Config.set_library_path(os.path.dirname(libclang))
if os.path.exists(sdk_dir):
sysroot_dir = os.path.join(sdk_dir, next(os.walk(sdk_dir))[1][0])
parameters.append('-isysroot')
parameters.append(sysroot_dir)
for item in sys.argv[1:]:
if item.startswith('-'):
parameters.append(item)
else:
filenames.append(item)
if len(filenames) == 0:
print('Syntax: %s [.. a list of header files ..]' % sys.argv[0])
exit(-1)
print('''/*
This file contains docstrings for the Python bindings.
Do not edit! These were automatically extracted by mkdoc.py
*/
#define __EXPAND(x) x
#define __COUNT(_1, _2, _3, _4, _5, _6, _7, COUNT, ...) COUNT
#define __VA_SIZE(...) __EXPAND(__COUNT(__VA_ARGS__, 7, 6, 5, 4, 3, 2, 1))
#define __CAT1(a, b) a ## b
#define __CAT2(a, b) __CAT1(a, b)
#define __DOC1(n1) __doc_##n1
#define __DOC2(n1, n2) __doc_##n1##_##n2
#define __DOC3(n1, n2, n3) __doc_##n1##_##n2##_##n3
#define __DOC4(n1, n2, n3, n4) __doc_##n1##_##n2##_##n3##_##n4
#define __DOC5(n1, n2, n3, n4, n5) __doc_##n1##_##n2##_##n3##_##n4##_##n5
#define __DOC6(n1, n2, n3, n4, n5, n6) __doc_##n1##_##n2##_##n3##_##n4##_##n5##_##n6
#define __DOC7(n1, n2, n3, n4, n5, n6, n7) __doc_##n1##_##n2##_##n3##_##n4##_##n5##_##n6##_##n7
#define DOC(...) __EXPAND(__EXPAND(__CAT2(__DOC, __VA_SIZE(__VA_ARGS__)))(__VA_ARGS__))
#if defined(__GNUG__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
#endif
''')
output.clear()
for filename in filenames:
thr = ExtractionThread(filename, parameters)
thr.start()
print('Waiting for jobs to finish ..', file=sys.stderr)
for i in range(job_count):
job_semaphore.acquire()
name_ctr = 1
name_prev = None
for name, _, comment in list(sorted(output, key=lambda x: (x[0], x[1]))):
if name == name_prev:
name_ctr += 1
name = name + "_%i" % name_ctr
else:
name_prev = name
name_ctr = 1
print('\nstatic const char *%s =%sR"doc(%s)doc";' %
(name, '\n' if '\n' in comment else ' ', comment))
print('''
#if defined(__GNUG__)
#pragma GCC diagnostic pop
#endif
''')

View File

@ -0,0 +1,100 @@
# pybind11Config.cmake
# --------------------
#
# PYBIND11 cmake module.
# This module sets the following variables in your project::
#
# pybind11_FOUND - true if pybind11 and all required components found on the system
# pybind11_VERSION - pybind11 version in format Major.Minor.Release
# pybind11_INCLUDE_DIRS - Directories where pybind11 and python headers are located.
# pybind11_INCLUDE_DIR - Directory where pybind11 headers are located.
# pybind11_DEFINITIONS - Definitions necessary to use pybind11, namely USING_pybind11.
# pybind11_LIBRARIES - compile flags and python libraries (as needed) to link against.
# pybind11_LIBRARY - empty.
# CMAKE_MODULE_PATH - appends location of accompanying FindPythonLibsNew.cmake and
# pybind11Tools.cmake modules.
#
#
# Available components: None
#
#
# Exported targets::
#
# If pybind11 is found, this module defines the following :prop_tgt:`IMPORTED`
# interface library targets::
#
# pybind11::module - for extension modules
# pybind11::embed - for embedding the Python interpreter
#
# Python headers, libraries (as needed by platform), and the C++ standard
# are attached to the target. Set PythonLibsNew variables to influence
# python detection and PYBIND11_CPP_STANDARD (-std=c++11 or -std=c++14) to
# influence standard setting. ::
#
# find_package(pybind11 CONFIG REQUIRED)
# message(STATUS "Found pybind11 v${pybind11_VERSION}: ${pybind11_INCLUDE_DIRS}")
#
# # Create an extension module
# add_library(mylib MODULE main.cpp)
# target_link_libraries(mylib pybind11::module)
#
# # Or embed the Python interpreter into an executable
# add_executable(myexe main.cpp)
# target_link_libraries(myexe pybind11::embed)
#
# Suggested usage::
#
# find_package with version info is not recommended except for release versions. ::
#
# find_package(pybind11 CONFIG)
# find_package(pybind11 2.0 EXACT CONFIG REQUIRED)
#
#
# The following variables can be set to guide the search for this package::
#
# pybind11_DIR - CMake variable, set to directory containing this Config file
# CMAKE_PREFIX_PATH - CMake variable, set to root directory of this package
# PATH - environment variable, set to bin directory of this package
# CMAKE_DISABLE_FIND_PACKAGE_pybind11 - CMake variable, disables
# find_package(pybind11) when not REQUIRED, perhaps to force internal build
@PACKAGE_INIT@
set(PN pybind11)
# location of pybind11/pybind11.h
set(${PN}_INCLUDE_DIR "${PACKAGE_PREFIX_DIR}/@CMAKE_INSTALL_INCLUDEDIR@")
set(${PN}_LIBRARY "")
set(${PN}_DEFINITIONS USING_${PN})
check_required_components(${PN})
# make detectable the FindPythonLibsNew.cmake module
list(APPEND CMAKE_MODULE_PATH ${CMAKE_CURRENT_LIST_DIR})
include(pybind11Tools)
if(NOT (CMAKE_VERSION VERSION_LESS 3.0))
#-----------------------------------------------------------------------------
# Don't include targets if this file is being picked up by another
# project which has already built this as a subproject
#-----------------------------------------------------------------------------
if(NOT TARGET ${PN}::pybind11)
include("${CMAKE_CURRENT_LIST_DIR}/${PN}Targets.cmake")
find_package(PythonLibsNew ${PYBIND11_PYTHON_VERSION} MODULE REQUIRED)
set_property(TARGET ${PN}::pybind11 APPEND PROPERTY INTERFACE_INCLUDE_DIRECTORIES ${PYTHON_INCLUDE_DIRS})
set_property(TARGET ${PN}::embed APPEND PROPERTY INTERFACE_LINK_LIBRARIES ${PYTHON_LIBRARIES})
if(WIN32 OR CYGWIN)
set_property(TARGET ${PN}::module APPEND PROPERTY INTERFACE_LINK_LIBRARIES ${PYTHON_LIBRARIES})
endif()
set_property(TARGET ${PN}::pybind11 APPEND PROPERTY INTERFACE_COMPILE_OPTIONS "${PYBIND11_CPP_STANDARD}")
get_property(_iid TARGET ${PN}::pybind11 PROPERTY INTERFACE_INCLUDE_DIRECTORIES)
get_property(_ill TARGET ${PN}::module PROPERTY INTERFACE_LINK_LIBRARIES)
set(${PN}_INCLUDE_DIRS ${_iid})
set(${PN}_LIBRARIES ${_ico} ${_ill})
endif()
endif()

View File

@ -0,0 +1,202 @@
# tools/pybind11Tools.cmake -- Build system for the pybind11 modules
#
# Copyright (c) 2015 Wenzel Jakob <wenzel@inf.ethz.ch>
#
# All rights reserved. Use of this source code is governed by a
# BSD-style license that can be found in the LICENSE file.
cmake_minimum_required(VERSION 2.8.12)
# Add a CMake parameter for choosing a desired Python version
if(NOT PYBIND11_PYTHON_VERSION)
set(PYBIND11_PYTHON_VERSION "" CACHE STRING "Python version to use for compiling modules")
endif()
set(Python_ADDITIONAL_VERSIONS 3.7 3.6 3.5 3.4)
find_package(PythonLibsNew ${PYBIND11_PYTHON_VERSION} REQUIRED)
include(CheckCXXCompilerFlag)
include(CMakeParseArguments)
if(NOT PYBIND11_CPP_STANDARD AND NOT CMAKE_CXX_STANDARD)
if(NOT MSVC)
check_cxx_compiler_flag("-std=c++14" HAS_CPP14_FLAG)
if (HAS_CPP14_FLAG)
set(PYBIND11_CPP_STANDARD -std=c++14)
else()
check_cxx_compiler_flag("-std=c++11" HAS_CPP11_FLAG)
if (HAS_CPP11_FLAG)
set(PYBIND11_CPP_STANDARD -std=c++11)
else()
message(FATAL_ERROR "Unsupported compiler -- pybind11 requires C++11 support!")
endif()
endif()
elseif(MSVC)
set(PYBIND11_CPP_STANDARD /std:c++14)
endif()
set(PYBIND11_CPP_STANDARD ${PYBIND11_CPP_STANDARD} CACHE STRING
"C++ standard flag, e.g. -std=c++11, -std=c++14, /std:c++14. Defaults to C++14 mode." FORCE)
endif()
# Checks whether the given CXX/linker flags can compile and link a cxx file. cxxflags and
# linkerflags are lists of flags to use. The result variable is a unique variable name for each set
# of flags: the compilation result will be cached base on the result variable. If the flags work,
# sets them in cxxflags_out/linkerflags_out internal cache variables (in addition to ${result}).
function(_pybind11_return_if_cxx_and_linker_flags_work result cxxflags linkerflags cxxflags_out linkerflags_out)
set(CMAKE_REQUIRED_LIBRARIES ${linkerflags})
check_cxx_compiler_flag("${cxxflags}" ${result})
if (${result})
set(${cxxflags_out} "${cxxflags}" CACHE INTERNAL "" FORCE)
set(${linkerflags_out} "${linkerflags}" CACHE INTERNAL "" FORCE)
endif()
endfunction()
# Internal: find the appropriate link time optimization flags for this compiler
function(_pybind11_add_lto_flags target_name prefer_thin_lto)
if (NOT DEFINED PYBIND11_LTO_CXX_FLAGS)
set(PYBIND11_LTO_CXX_FLAGS "" CACHE INTERNAL "")
set(PYBIND11_LTO_LINKER_FLAGS "" CACHE INTERNAL "")
if(CMAKE_CXX_COMPILER_ID MATCHES "GNU|Clang")
set(cxx_append "")
set(linker_append "")
if (CMAKE_CXX_COMPILER_ID MATCHES "Clang" AND NOT APPLE)
# Clang Gold plugin does not support -Os; append -O3 to MinSizeRel builds to override it
set(linker_append ";$<$<CONFIG:MinSizeRel>:-O3>")
elseif(CMAKE_CXX_COMPILER_ID MATCHES "GNU")
set(cxx_append ";-fno-fat-lto-objects")
endif()
if (CMAKE_CXX_COMPILER_ID MATCHES "Clang" AND prefer_thin_lto)
_pybind11_return_if_cxx_and_linker_flags_work(HAS_FLTO_THIN
"-flto=thin${cxx_append}" "-flto=thin${linker_append}"
PYBIND11_LTO_CXX_FLAGS PYBIND11_LTO_LINKER_FLAGS)
endif()
if (NOT HAS_FLTO_THIN)
_pybind11_return_if_cxx_and_linker_flags_work(HAS_FLTO
"-flto${cxx_append}" "-flto${linker_append}"
PYBIND11_LTO_CXX_FLAGS PYBIND11_LTO_LINKER_FLAGS)
endif()
elseif (CMAKE_CXX_COMPILER_ID MATCHES "Intel")
# Intel equivalent to LTO is called IPO
_pybind11_return_if_cxx_and_linker_flags_work(HAS_INTEL_IPO
"-ipo" "-ipo" PYBIND11_LTO_CXX_FLAGS PYBIND11_LTO_LINKER_FLAGS)
elseif(MSVC)
# cmake only interprets libraries as linker flags when they start with a - (otherwise it
# converts /LTCG to \LTCG as if it was a Windows path). Luckily MSVC supports passing flags
# with - instead of /, even if it is a bit non-standard:
_pybind11_return_if_cxx_and_linker_flags_work(HAS_MSVC_GL_LTCG
"/GL" "-LTCG" PYBIND11_LTO_CXX_FLAGS PYBIND11_LTO_LINKER_FLAGS)
endif()
if (PYBIND11_LTO_CXX_FLAGS)
message(STATUS "LTO enabled")
else()
message(STATUS "LTO disabled (not supported by the compiler and/or linker)")
endif()
endif()
# Enable LTO flags if found, except for Debug builds
if (PYBIND11_LTO_CXX_FLAGS)
target_compile_options(${target_name} PRIVATE "$<$<NOT:$<CONFIG:Debug>>:${PYBIND11_LTO_CXX_FLAGS}>")
endif()
if (PYBIND11_LTO_LINKER_FLAGS)
target_link_libraries(${target_name} PRIVATE "$<$<NOT:$<CONFIG:Debug>>:${PYBIND11_LTO_LINKER_FLAGS}>")
endif()
endfunction()
# Build a Python extension module:
# pybind11_add_module(<name> [MODULE | SHARED] [EXCLUDE_FROM_ALL]
# [NO_EXTRAS] [THIN_LTO] source1 [source2 ...])
#
function(pybind11_add_module target_name)
set(options MODULE SHARED EXCLUDE_FROM_ALL NO_EXTRAS THIN_LTO)
cmake_parse_arguments(ARG "${options}" "" "" ${ARGN})
if(ARG_MODULE AND ARG_SHARED)
message(FATAL_ERROR "Can't be both MODULE and SHARED")
elseif(ARG_SHARED)
set(lib_type SHARED)
else()
set(lib_type MODULE)
endif()
if(ARG_EXCLUDE_FROM_ALL)
set(exclude_from_all EXCLUDE_FROM_ALL)
endif()
add_library(${target_name} ${lib_type} ${exclude_from_all} ${ARG_UNPARSED_ARGUMENTS})
target_include_directories(${target_name}
PRIVATE ${PYBIND11_INCLUDE_DIR} # from project CMakeLists.txt
PRIVATE ${pybind11_INCLUDE_DIR} # from pybind11Config
PRIVATE ${PYTHON_INCLUDE_DIRS})
# The prefix and extension are provided by FindPythonLibsNew.cmake
set_target_properties(${target_name} PROPERTIES PREFIX "${PYTHON_MODULE_PREFIX}")
set_target_properties(${target_name} PROPERTIES SUFFIX "${PYTHON_MODULE_EXTENSION}")
# -fvisibility=hidden is required to allow multiple modules compiled against
# different pybind versions to work properly, and for some features (e.g.
# py::module_local). We force it on everything inside the `pybind11`
# namespace; also turning it on for a pybind module compilation here avoids
# potential warnings or issues from having mixed hidden/non-hidden types.
set_target_properties(${target_name} PROPERTIES CXX_VISIBILITY_PRESET "hidden")
if(WIN32 OR CYGWIN)
# Link against the Python shared library on Windows
target_link_libraries(${target_name} PRIVATE ${PYTHON_LIBRARIES})
elseif(APPLE)
# It's quite common to have multiple copies of the same Python version
# installed on one's system. E.g.: one copy from the OS and another copy
# that's statically linked into an application like Blender or Maya.
# If we link our plugin library against the OS Python here and import it
# into Blender or Maya later on, this will cause segfaults when multiple
# conflicting Python instances are active at the same time (even when they
# are of the same version).
# Windows is not affected by this issue since it handles DLL imports
# differently. The solution for Linux and Mac OS is simple: we just don't
# link against the Python library. The resulting shared library will have
# missing symbols, but that's perfectly fine -- they will be resolved at
# import time.
target_link_libraries(${target_name} PRIVATE "-undefined dynamic_lookup")
if(ARG_SHARED)
# Suppress CMake >= 3.0 warning for shared libraries
set_target_properties(${target_name} PROPERTIES MACOSX_RPATH ON)
endif()
endif()
# Make sure C++11/14 are enabled
target_compile_options(${target_name} PUBLIC ${PYBIND11_CPP_STANDARD})
if(ARG_NO_EXTRAS)
return()
endif()
_pybind11_add_lto_flags(${target_name} ${ARG_THIN_LTO})
if (NOT MSVC AND NOT ${CMAKE_BUILD_TYPE} MATCHES Debug)
# Strip unnecessary sections of the binary on Linux/Mac OS
if(CMAKE_STRIP)
if(APPLE)
add_custom_command(TARGET ${target_name} POST_BUILD
COMMAND ${CMAKE_STRIP} -x $<TARGET_FILE:${target_name}>)
else()
add_custom_command(TARGET ${target_name} POST_BUILD
COMMAND ${CMAKE_STRIP} $<TARGET_FILE:${target_name}>)
endif()
endif()
endif()
if(MSVC)
# /MP enables multithreaded builds (relevant when there are many files), /bigobj is
# needed for bigger binding projects due to the limit to 64k addressable sections
target_compile_options(${target_name} PRIVATE /MP /bigobj)
endif()
endfunction()

View File

@ -3,7 +3,7 @@
#ifndef DLIB_PYTHoN_TOP_
#define DLIB_PYTHoN_TOP_
#include "python/boost_python_utils.h"
#include "python/pybind_utils.h"
#include "python/pyassert.h"
#include "python/serialize_pickle.h"
#include "python/numpy.h"

View File

@ -3,22 +3,23 @@
#ifndef DLIB_PYTHON_NuMPY_Hh_
#define DLIB_PYTHON_NuMPY_Hh_
#include <boost/python.hpp>
#include <pybind11/pybind11.h>
#include <dlib/error.h>
#include <dlib/algs.h>
#include <dlib/string.h>
#include <dlib/array.h>
#include <dlib/pixel.h>
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
template <typename T>
void validate_numpy_array_type (
const boost::python::object& obj
const py::object& obj
)
{
using namespace boost::python;
const char ch = boost::python::extract<char>(obj.attr("dtype").attr("char"));
const char ch = obj.attr("dtype").attr("char").cast<char>();
if (dlib::is_same_type<T,double>::value && ch != 'd')
throw dlib::error("Expected numpy.ndarray of float64");
@ -34,7 +35,7 @@ void validate_numpy_array_type (
template <int dims>
void get_numpy_ndarray_shape (
const boost::python::object& obj,
const py::object& obj,
long (&shape)[dims]
)
/*!
@ -73,7 +74,7 @@ void get_numpy_ndarray_shape (
template <typename T, int dims>
void get_numpy_ndarray_parts (
boost::python::object& obj,
py::object& obj,
T*& data,
dlib::array<T>& contig_buf,
long (&shape)[dims]
@ -123,7 +124,7 @@ void get_numpy_ndarray_parts (
template <typename T, int dims>
void get_numpy_ndarray_parts (
const boost::python::object& obj,
const py::object& obj,
const T*& data,
dlib::array<T>& contig_buf,
long (&shape)[dims]

View File

@ -16,7 +16,7 @@ class numpy_gray_image
public:
numpy_gray_image() : _data(0), _nr(0), _nc(0) {}
numpy_gray_image (boost::python::object& img)
numpy_gray_image (py::object& img)
{
long shape[2];
get_numpy_ndarray_parts(img, _data, _contig_buf, shape);
@ -49,7 +49,7 @@ namespace dlib
// ----------------------------------------------------------------------------------------
inline bool is_gray_python_image (boost::python::object& img)
inline bool is_gray_python_image (py::object& img)
{
try
{
@ -70,7 +70,7 @@ class numpy_rgb_image
public:
numpy_rgb_image() : _data(0), _nr(0), _nc(0) {}
numpy_rgb_image (boost::python::object& img)
numpy_rgb_image (py::object& img)
{
long shape[3];
get_numpy_ndarray_parts(img, _data, _contig_buf, shape);
@ -107,7 +107,7 @@ namespace dlib
// ----------------------------------------------------------------------------------------
inline bool is_rgb_python_image (boost::python::object& img)
inline bool is_rgb_python_image (py::object& img)
{
try
{

View File

@ -3,14 +3,15 @@
#ifndef DLIB_PYaSSERT_Hh_
#define DLIB_PYaSSERT_Hh_
#include <boost/python.hpp>
#include <pybind11/pybind11.h>
#define pyassert(_exp,_message) \
{if ( !(_exp) ) \
{ \
namespace py = pybind11; \
PyErr_SetString( PyExc_ValueError, _message ); \
boost::python::throw_error_already_set(); \
}}
throw py::error_already_set(); \
}}
#endif // DLIB_PYaSSERT_Hh_

View File

@ -1,33 +1,18 @@
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_BOOST_PYTHON_UtILS_Hh_
#define DLIB_BOOST_PYTHON_UtILS_Hh_
#ifndef DLIB_PYBIND_UtILS_Hh_
#define DLIB_PYBIND_UtILS_Hh_
#include <boost/python.hpp>
#include <pybind11/pybind11.h>
#include <vector>
#include <string>
#include <dlib/serialize.h>
inline bool hasattr(
boost::python::object obj,
const std::string& attr_name
)
/*!
ensures
- if (obj has an attribute named attr_name) then
- returns true
- else
- returns false
!*/
{
return PyObject_HasAttrString(obj.ptr(), attr_name.c_str());
}
// ----------------------------------------------------------------------------------------
namespace py = pybind11;
template <typename T>
std::vector<T> python_list_to_vector (
const boost::python::object& obj
const py::list& obj
)
/*!
ensures
@ -37,13 +22,13 @@ std::vector<T> python_list_to_vector (
std::vector<T> vect(len(obj));
for (unsigned long i = 0; i < vect.size(); ++i)
{
vect[i] = boost::python::extract<T>(obj[i]);
vect[i] = obj[i].cast<T>();
}
return vect;
}
template <typename T>
boost::python::list vector_to_python_list (
py::list vector_to_python_list (
const std::vector<T>& vect
)
/*!
@ -51,16 +36,30 @@ boost::python::list vector_to_python_list (
- converts a std::vector<T> into a python list object.
!*/
{
boost::python::list obj;
py::list obj;
for (unsigned long i = 0; i < vect.size(); ++i)
obj.append(vect[i]);
return obj;
}
template <typename T>
void extend_vector_with_python_list (
std::vector<T> &v,
const py::list &l
)
/*!
ensures
- appends items from a python list to the end of std::vector<T>.
!*/
{
for (const auto &item : l)
v.push_back(item.cast<T>());
}
// ----------------------------------------------------------------------------------------
template <typename T>
boost::shared_ptr<T> load_object_from_file (
std::shared_ptr<T> load_object_from_file (
const std::string& filename
)
/*!
@ -71,7 +70,7 @@ boost::shared_ptr<T> load_object_from_file (
std::ifstream fin(filename.c_str(), std::ios::binary);
if (!fin)
throw dlib::error("Unable to open " + filename);
boost::shared_ptr<T> obj(new T());
auto obj = std::make_shared<T>();
deserialize(*obj, fin);
return obj;
}
@ -79,5 +78,5 @@ boost::shared_ptr<T> load_object_from_file (
// ----------------------------------------------------------------------------------------
#endif // DLIB_BOOST_PYTHON_UtILS_Hh_
#endif // DLIB_PYBIND_UtILS_Hh_

View File

@ -4,68 +4,63 @@
#define DLIB_SERIALIZE_PiCKLE_Hh_
#include <dlib/serialize.h>
#include <boost/python.hpp>
#include <pybind11/pybind11.h>
#include <sstream>
#include <dlib/vectorstream.h>
template <typename T>
struct serialize_pickle : boost::python::pickle_suite
template<typename T>
py::tuple getstate(const T& item)
{
static boost::python::tuple getstate(
const T& item
)
using namespace dlib;
std::vector<char> buf;
buf.reserve(5000);
vectorstream sout(buf);
serialize(item, sout);
return py::make_tuple(py::handle(
PyBytes_FromStringAndSize(buf.size()?&buf[0]:0, buf.size())));
}
template<typename T>
T setstate(py::tuple state)
{
using namespace dlib;
if (len(state) != 1)
{
using namespace dlib;
std::vector<char> buf;
buf.reserve(5000);
vectorstream sout(buf);
serialize(item, sout);
return boost::python::make_tuple(boost::python::handle<>(
PyBytes_FromStringAndSize(buf.size()?&buf[0]:0, buf.size())));
PyErr_SetObject(PyExc_ValueError,
py::str("expected 1-item tuple in call to __setstate__; got {}").format(state).ptr()
);
throw py::error_already_set();
}
static void setstate(
T& item,
boost::python::tuple state
)
// We used to serialize by converting to a str but the boost.python routines for
// doing this don't work in Python 3. You end up getting an error about invalid
// UTF-8 encodings. So instead we access the python C interface directly and use
// bytes objects. However, we keep the deserialization code that worked with str
// for backwards compatibility with previously pickled files.
T item;
py::object obj = state[0];
if (py::isinstance<py::str>(obj))
{
using namespace dlib;
using namespace boost::python;
if (len(state) != 1)
{
PyErr_SetObject(PyExc_ValueError,
("expected 1-item tuple in call to __setstate__; got %s"
% state).ptr()
);
throw_error_already_set();
}
// We used to serialize by converting to a str but the boost.python routines for
// doing this don't work in Python 3. You end up getting an error about invalid
// UTF-8 encodings. So instead we access the python C interface directly and use
// bytes objects. However, we keep the deserialization code that worked with str
// for backwards compatibility with previously pickled files.
if (boost::python::extract<str>(state[0]).check())
{
str data = boost::python::extract<str>(state[0]);
std::string temp(boost::python::extract<const char*>(data), len(data));
std::istringstream sin(temp);
deserialize(item, sin);
}
else if(PyBytes_Check(object(state[0]).ptr()))
{
object obj = state[0];
char* data = PyBytes_AsString(obj.ptr());
unsigned long num = PyBytes_Size(obj.ptr());
std::istringstream sin(std::string(data, num));
deserialize(item, sin);
}
else
{
throw error("Unable to unpickle, error in input file.");
}
py::str data = state[0].cast<py::str>();
std::string temp = data;
std::istringstream sin(temp);
deserialize(item, sin);
}
};
else if(PyBytes_Check(py::object(state[0]).ptr()))
{
py::object obj = state[0];
char* data = PyBytes_AsString(obj.ptr());
unsigned long num = PyBytes_Size(obj.ptr());
std::istringstream sin(std::string(data, num));
deserialize(item, sin);
}
else
{
throw error("Unable to unpickle, error in input file.");
}
return item;
}
#endif // DLIB_SERIALIZE_PiCKLE_Hh_

View File

@ -26,8 +26,10 @@
#
import dlib
import pickle
try:
import cPickle as pickle
except ImportError:
import pickle
x = dlib.vectors()
y = dlib.array()
@ -62,5 +64,5 @@ print("prediction for second sample: {}".format(classifier(x[1])))
# classifier models can also be pickled in the same was as any other python object.
with open('saved_model.pickle', 'wb') as handle:
pickle.dump(classifier, handle)
pickle.dump(classifier, handle, 2)

View File

@ -1,12 +1,65 @@
CMAKE_MINIMUM_REQUIRED(VERSION 2.8.12)
set(USE_SSE4_INSTRUCTIONS ON CACHE BOOL "Use SSE4 instructions")
# Make DLIB_ASSERT statements not abort the python interpreter, but just return an error.
add_definitions(-DDLIB_NO_ABORT_ON_2ND_FATAL_ERROR)
include(../../dlib/cmake_utils/add_python_module)
option(PYTHON3 "Build a Python3 compatible library rather than Python2." OFF)
# Avoid cmake warnings about changes in behavior of some Mac OS X path
# variable we don't care about.
if (POLICY CMP0042)
cmake_policy(SET CMP0042 NEW)
endif()
# Sometimes a computer will have multiple python verions installed. So in this
# block of code we find the one in the user's path and add its home folder into
# cmake's search path. That way it will use that version of python first.
if (PYTHON3)
find_program(PYTHON_EXECUTABLE python3)
endif()
if (NOT PYTHON_EXECUTABLE)
find_program(PYTHON_EXECUTABLE python)
endif()
# Resolve symbolic links, hopefully this will give us a path in the proper
# python home directory.
get_filename_component(PYTHON_EXECUTABLE ${PYTHON_EXECUTABLE} REALPATH)
# Pick out the parent directories
get_filename_component(PYTHON_PATH ${PYTHON_EXECUTABLE} PATH)
get_filename_component(PYTHON_PATH ${PYTHON_PATH} PATH)
list(APPEND CMAKE_PREFIX_PATH "${PYTHON_PATH}")
if (CMAKE_COMPILER_IS_GNUCXX)
# Just setting CMAKE_POSITION_INDEPENDENT_CODE should be enough to set
# -fPIC for GCC but sometimes it still doesn't get set, so make sure it
# does.
add_definitions("-fPIC")
set(CMAKE_POSITION_INDEPENDENT_CODE True)
else()
set(CMAKE_POSITION_INDEPENDENT_CODE True)
endif()
# To avoid dll hell, always link everything statically when compiling in
# visual studio. This way, the resulting library won't depend on a bunch
# of other dll files and can be safely copied to someone elese's computer
# and expected to run.
if (MSVC)
include(${CMAKE_CURRENT_LIST_DIR}/../../dlib/cmake_utils/tell_visual_studio_to_use_static_runtime.cmake)
endif()
add_subdirectory(../../dlib/external/pybind11 ./pybind11_build)
# include dlib so we can link against it
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/../../dlib ./dlib_build)
if (USING_OLD_VISUAL_STUDIO_COMPILER)
message(FATAL_ERROR "You have to use a version of Visual Studio that supports C++11. As of December 2017, the only versions that have good enough C++11 support to compile the dlib Pyhton API is a fully updated Visual Studio 2015 or a fully updated Visual Studio 2017. Older versions of either of these compilers have bad C++11 support and will fail to compile the Python extension. ***SO UPDATE YOUR VISUAL STUDIO TO MAKE THIS ERROR GO AWAY***")
endif()
if (WIN32)
message(STATUS "USING PYTHON_LIBS: ${PYTHON_LIBRARIES}")
endif()
# Test for numpy
find_package(PythonInterp)
@ -62,8 +115,12 @@ if(NOT ${DLIB_NO_GUI_SUPPORT})
list(APPEND python_srcs src/gui.cpp)
endif()
add_python_module(dlib ${python_srcs})
pybind11_add_module(dlib_ ${python_srcs})
set_target_properties(dlib_
PROPERTIES OUTPUT_NAME dlib)
target_link_libraries(dlib_ PRIVATE dlib)
# When you run "make install" we will copy the compiled dlib.so (or dlib.pyd)
# library file to the python_examples folder.
install_dlib_to(../../python_examples)
# library file to the python_examples and the test folder.
install(TARGETS dlib_ LIBRARY DESTINATION ${CMAKE_CURRENT_LIST_DIR}/../../python_examples)
install(TARGETS dlib_ LIBRARY DESTINATION ${CMAKE_CURRENT_LIST_DIR}/test)

View File

@ -4,34 +4,43 @@
#include <dlib/matrix.h>
#include <sstream>
#include <string>
#include <boost/python/suite/indexing/vector_indexing_suite.hpp>
#include <boost/python/suite/indexing/map_indexing_suite.hpp>
#include <boost/python/suite/indexing/indexing_suite.hpp>
#include <boost/shared_ptr.hpp>
#include <dlib/string.h>
#include <pybind11/stl_bind.h>
using namespace std;
using namespace dlib;
using namespace boost::python;
namespace py = pybind11;
PYBIND11_MAKE_OPAQUE(std::vector<double>);
boost::shared_ptr<std::vector<double> > array_from_object(object obj)
typedef std::vector<matrix<double,0,1>> column_vectors;
PYBIND11_MAKE_OPAQUE(column_vectors);
PYBIND11_MAKE_OPAQUE(std::vector<column_vectors>);
typedef pair<unsigned long,unsigned long> ulong_pair;
PYBIND11_MAKE_OPAQUE(ulong_pair);
PYBIND11_MAKE_OPAQUE(std::vector<ulong_pair>);
PYBIND11_MAKE_OPAQUE(std::vector<std::vector<ulong_pair>>);
typedef pair<unsigned long,double> ulong_double_pair;
PYBIND11_MAKE_OPAQUE(ulong_double_pair);
PYBIND11_MAKE_OPAQUE(std::vector<ulong_double_pair>);
PYBIND11_MAKE_OPAQUE(std::vector<std::vector<ulong_double_pair>>);
PYBIND11_MAKE_OPAQUE(std::vector<std::vector<std::vector<ulong_double_pair> > >);
std::shared_ptr<std::vector<double> > array_from_object(py::object obj)
{
extract<long> thesize(obj);
if (thesize.check())
{
long nr = thesize;
boost::shared_ptr<std::vector<double> > temp(new std::vector<double>(nr));
return temp;
}
else
{
const long nr = len(obj);
boost::shared_ptr<std::vector<double> > temp(new std::vector<double>(nr));
try {
long nr = obj.cast<long>();
return std::make_shared<std::vector<double>>(nr);
} catch (py::cast_error &e) {
py::list li = obj.cast<py::list>();
const long nr = len(li);
auto temp = std::make_shared<std::vector<double>>(nr);
for ( long r = 0; r < nr; ++r)
{
(*temp)[r] = extract<double>(obj[r]);
(*temp)[r] = li[r].cast<double>();
}
return temp;
}
@ -91,8 +100,7 @@ struct range_iter
else
{
PyErr_SetString(PyExc_StopIteration, "No more data.");
boost::python::throw_error_already_set();
return 0;
throw py::error_already_set();
}
}
};
@ -149,78 +157,91 @@ unsigned long range_len(const std::pair<unsigned long, unsigned long>& r)
template <typename T>
void resize(T& v, unsigned long n) { v.resize(n); }
void bind_basic_types()
void bind_basic_types(py::module& m)
{
class_<std::vector<double> >("array", "This object represents a 1D array of floating point numbers. "
"Moreover, it binds directly to the C++ type std::vector<double>.", init<>()
)
.def(vector_indexing_suite<std::vector<double> >())
.def("__init__", make_constructor(&array_from_object))
{
typedef double item_type;
typedef std::vector<item_type> type;
typedef std::shared_ptr<type> type_ptr;
py::bind_vector<type, type_ptr >(m, "array", "This object represents a 1D array of floating point numbers. "
"Moreover, it binds directly to the C++ type std::vector<double>.")
.def(py::init(&array_from_object))
.def("__str__", array__str__)
.def("__repr__", array__repr__)
.def("clear", &std::vector<double>::clear)
.def("resize", resize<std::vector<double> >)
.def_pickle(serialize_pickle<std::vector<double> >());
class_<std::vector<matrix<double,0,1> > >("vectors", "This object is an array of vector objects.")
.def(vector_indexing_suite<std::vector<matrix<double,0,1> > >())
.def("clear", &std::vector<matrix<double,0,1> >::clear)
.def("resize", resize<std::vector<matrix<double,0,1> > >)
.def_pickle(serialize_pickle<std::vector<matrix<double,0,1> > >());
{
typedef std::vector<std::vector<matrix<double,0,1> > > type;
class_<type>("vectorss", "This object is an array of arrays of vector objects.")
.def(vector_indexing_suite<type>())
.def("clear", &type::clear)
.def("resize", resize<type>)
.def_pickle(serialize_pickle<type>());
.def("extend", extend_vector_with_python_list<item_type>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef matrix<double,0,1> item_type;
typedef std::vector<item_type > type;
py::bind_vector<type>(m, "vectors", "This object is an array of vector objects.")
.def("clear", &type::clear)
.def("resize", resize<type>)
.def("extend", extend_vector_with_python_list<item_type>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef std::vector<matrix<double,0,1> > item_type;
typedef std::vector<item_type > type;
py::bind_vector<type>(m, "vectorss", "This object is an array of arrays of vector objects.")
.def("clear", &type::clear)
.def("resize", resize<type>)
.def("extend", extend_vector_with_python_list<item_type>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
typedef pair<unsigned long,unsigned long> range_type;
class_<range_type>("range", "This object is used to represent a range of elements in an array.", init<>() )
.def(init<unsigned long,unsigned long>())
py::class_<range_type>(m, "range", "This object is used to represent a range of elements in an array.")
.def(py::init<unsigned long,unsigned long>())
.def_readwrite("begin",&range_type::first, "The index of the first element in the range. This is represented using an unsigned integer.")
.def_readwrite("end",&range_type::second, "One past the index of the last element in the range. This is represented using an unsigned integer.")
.def("__str__", range__str__)
.def("__repr__", range__repr__)
.def("__iter__", &make_range_iterator)
.def("__len__", &range_len)
.def_pickle(serialize_pickle<range_type>());
.def(py::pickle(&getstate<range_type>, &setstate<range_type>));
class_<range_iter>("_range_iter")
py::class_<range_iter>(m, "_range_iter")
.def("next", &range_iter::next)
.def("__next__", &range_iter::next);
{
typedef std::vector<std::pair<unsigned long, unsigned long> > type;
class_<type>("ranges", "This object is an array of range objects.")
.def(vector_indexing_suite<type>())
typedef std::pair<unsigned long, unsigned long> item_type;
typedef std::vector<item_type > type;
py::bind_vector<type>(m, "ranges", "This object is an array of range objects.")
.def("clear", &type::clear)
.def("resize", resize<type>)
.def_pickle(serialize_pickle<type>());
.def("extend", extend_vector_with_python_list<item_type>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef std::vector<std::vector<std::pair<unsigned long, unsigned long> > > type;
class_<type>("rangess", "This object is an array of arrays of range objects.")
.def(vector_indexing_suite<type>())
typedef std::vector<std::pair<unsigned long, unsigned long> > item_type;
typedef std::vector<item_type > type;
py::bind_vector<type>(m, "rangess", "This object is an array of arrays of range objects.")
.def("clear", &type::clear)
.def("resize", resize<type>)
.def_pickle(serialize_pickle<type>());
.def("extend", extend_vector_with_python_list<item_type>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
typedef pair<unsigned long,double> pair_type;
class_<pair_type>("pair", "This object is used to represent the elements of a sparse_vector.", init<>() )
.def(init<unsigned long,double>())
py::class_<pair_type>(m, "pair", "This object is used to represent the elements of a sparse_vector.")
.def(py::init<unsigned long,double>())
.def_readwrite("first",&pair_type::first, "This field represents the index/dimension number.")
.def_readwrite("second",&pair_type::second, "This field contains the value in a vector at dimension specified by the first field.")
.def("__str__", pair__str__)
.def("__repr__", pair__repr__)
.def_pickle(serialize_pickle<pair_type>());
.def(py::pickle(&getstate<pair_type>, &setstate<pair_type>));
class_<std::vector<pair_type> >("sparse_vector",
{
typedef std::vector<pair_type> type;
py::bind_vector<type>(m, "sparse_vector",
"This object represents the mathematical idea of a sparse column vector. It is \n\
simply an array of dlib.pair objects, each representing an index/value pair in \n\
the vector. Any elements of the vector which are missing are implicitly set to \n\
@ -233,29 +254,34 @@ not be duplicates. However, some functions work with \"unsorted\" sparse \n\
vectors. These are dlib.sparse_vector objects that have either duplicate \n\
entries or non-sorted index values. Note further that you can convert an \n\
\"unsorted\" sparse_vector into a properly sorted sparse vector by calling \n\
dlib.make_sparse_vector() on it. "
dlib.make_sparse_vector() on it. "
)
.def(vector_indexing_suite<std::vector<pair_type> >())
.def("__str__", sparse_vector__str__)
.def("__repr__", sparse_vector__repr__)
.def("clear", &std::vector<pair_type >::clear)
.def("resize", resize<std::vector<pair_type > >)
.def_pickle(serialize_pickle<std::vector<pair_type> >());
class_<std::vector<std::vector<pair_type> > >("sparse_vectors", "This object is an array of sparse_vector objects.")
.def(vector_indexing_suite<std::vector<std::vector<pair_type> > >())
.def("clear", &std::vector<std::vector<pair_type> >::clear)
.def("resize", resize<std::vector<std::vector<pair_type> > >)
.def_pickle(serialize_pickle<std::vector<std::vector<pair_type> > >());
{
typedef std::vector<std::vector<std::vector<pair_type> > > type;
class_<type>("sparse_vectorss", "This object is an array of arrays of sparse_vector objects.")
.def(vector_indexing_suite<type>())
.def("clear", &type::clear)
.def("resize", resize<type>)
.def_pickle(serialize_pickle<type>());
.def("extend", extend_vector_with_python_list<pair_type>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef std::vector<pair_type> item_type;
typedef std::vector<item_type > type;
py::bind_vector<type>(m, "sparse_vectors", "This object is an array of sparse_vector objects.")
.def("clear", &type::clear)
.def("resize", resize<type>)
.def("extend", extend_vector_with_python_list<item_type>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef std::vector<std::vector<pair_type> > item_type;
typedef std::vector<item_type > type;
py::bind_vector<type>(m, "sparse_vectorss", "This object is an array of arrays of sparse_vector objects.")
.def("clear", &type::clear)
.def("resize", resize<type>)
.def("extend", extend_vector_with_python_list<item_type>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
}

View File

@ -2,12 +2,10 @@
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <boost/shared_ptr.hpp>
#include <dlib/statistics.h>
#include <boost/python/args.hpp>
using namespace dlib;
using namespace boost::python;
namespace py = pybind11;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
@ -53,22 +51,22 @@ matrix<double,0,1> apply_cca_transform (
return sparse_matrix_vector_multiply(trans(m), v);
}
void bind_cca()
void bind_cca(py::module& m)
{
class_<cca_outputs>("cca_outputs")
.add_property("correlations", &cca_outputs::correlations)
.add_property("Ltrans", &cca_outputs::Ltrans)
.add_property("Rtrans", &cca_outputs::Rtrans);
py::class_<cca_outputs>(m, "cca_outputs")
.def_readwrite("correlations", &cca_outputs::correlations)
.def_readwrite("Ltrans", &cca_outputs::Ltrans)
.def_readwrite("Rtrans", &cca_outputs::Rtrans);
def("max_index_plus_one", sparse_vector_max_index_plus_one, arg("v"),
m.def("max_index_plus_one", sparse_vector_max_index_plus_one, py::arg("v"),
"ensures \n\
- returns the dimensionality of the given sparse vector. That is, returns a \n\
number one larger than the maximum index value in the vector. If the vector \n\
is empty then returns 0. "
is empty then returns 0. "
);
def("apply_cca_transform", apply_cca_transform, (arg("m"), arg("v")),
m.def("apply_cca_transform", apply_cca_transform, py::arg("m"), py::arg("v"),
"requires \n\
- max_index_plus_one(v) <= m.nr() \n\
ensures \n\
@ -77,7 +75,7 @@ ensures \n\
);
def("cca", _cca1, (arg("L"), arg("R"), arg("num_correlations"), arg("extra_rank")=5, arg("q")=2, arg("regularization")=0),
m.def("cca", _cca1, py::arg("L"), py::arg("R"), py::arg("num_correlations"), py::arg("extra_rank")=5, py::arg("q")=2, py::arg("regularization")=0,
"requires \n\
- num_correlations > 0 \n\
- len(L) > 0 \n\

View File

@ -6,10 +6,15 @@
#include <dlib/dnn.h>
#include <dlib/image_transforms.h>
#include "indexing.h"
#include <pybind11/stl_bind.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
PYBIND11_MAKE_OPAQUE(std::vector<mmod_rect>);
PYBIND11_MAKE_OPAQUE(std::vector<std::vector<mmod_rect> >);
class cnn_face_detection_model_v1
{
@ -22,7 +27,7 @@ public:
}
std::vector<mmod_rect> detect (
object pyimage,
py::object pyimage,
const int upsample_num_times
)
{
@ -60,7 +65,7 @@ public:
}
std::vector<std::vector<mmod_rect> > detect_mult (
boost::python::list& imgs,
py::list& imgs,
const int upsample_num_times,
const int batch_size = 128
)
@ -73,7 +78,7 @@ public:
{
// Copy the data into dlib based objects
matrix<rgb_pixel> image;
object tmp = boost::python::extract<object>(imgs[i]);
py::object tmp = imgs[i].cast<py::object>();
if (is_gray_python_image(tmp))
assign_image(image, numpy_gray_image(tmp));
else if (is_rgb_python_image(tmp))
@ -131,15 +136,15 @@ private:
// ----------------------------------------------------------------------------------------
void bind_cnn_face_detection()
void bind_cnn_face_detection(py::module& m)
{
using boost::python::arg;
{
class_<cnn_face_detection_model_v1>("cnn_face_detection_model_v1", "This object detects human faces in an image. The constructor loads the face detection model from a file. You can download a pre-trained model from http://dlib.net/files/mmod_human_face_detector.dat.bz2.", init<std::string>())
py::class_<cnn_face_detection_model_v1>(m, "cnn_face_detection_model_v1", "This object detects human faces in an image. The constructor loads the face detection model from a file. You can download a pre-trained model from http://dlib.net/files/mmod_human_face_detector.dat.bz2.")
.def(py::init<std::string>())
.def(
"__call__",
&cnn_face_detection_model_v1::detect,
(arg("img"), arg("upsample_num_times")=0),
py::arg("img"), py::arg("upsample_num_times")=0,
"Find faces in an image using a deep learning model.\n\
- Upsamples the image upsample_num_times before running the face \n\
detector."
@ -147,24 +152,24 @@ void bind_cnn_face_detection()
.def(
"__call__",
&cnn_face_detection_model_v1::detect_mult,
(arg("imgs"), arg("upsample_num_times")=0, arg("batch_size")=128),
py::arg("imgs"), py::arg("upsample_num_times")=0, py::arg("batch_size")=128,
"takes a list of images as input returning a 2d list of mmod rectangles"
);
}
{
typedef mmod_rect type;
class_<type>("mmod_rectangle", "Wrapper around a rectangle object and a detection confidence score.")
py::class_<type>(m, "mmod_rectangle", "Wrapper around a rectangle object and a detection confidence score.")
.def_readwrite("rect", &type::rect)
.def_readwrite("confidence", &type::detection_confidence);
}
{
typedef std::vector<mmod_rect> type;
class_<type>("mmod_rectangles", "An array of mmod rectangle objects.")
.def(vector_indexing_suite<type>());
py::bind_vector<type>(m, "mmod_rectangles", "An array of mmod rectangle objects.")
.def("extend", extend_vector_with_python_list<mmod_rect>);
}
{
typedef std::vector<std::vector<mmod_rect> > type;
class_<type>("mmod_rectangless", "A 2D array of mmod rectangle objects.")
.def(vector_indexing_suite<type>());
py::bind_vector<type>(m, "mmod_rectangless", "A 2D array of mmod rectangle objects.")
.def("extend", extend_vector_with_python_list<std::vector<mmod_rect>>);
}
}

View File

@ -8,10 +8,11 @@
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
template <typename dest_image_type>
void pyimage_to_dlib_image(object img, dest_image_type& image)
void pyimage_to_dlib_image(py::object img, dest_image_type& image)
{
if (is_gray_python_image(img))
assign_image(image, numpy_gray_image(img));
@ -23,21 +24,27 @@ void pyimage_to_dlib_image(object img, dest_image_type& image)
template <typename image_array, typename param_type>
void images_and_nested_params_to_dlib(
const object& pyimages,
const object& pyparams,
const py::object& pyimages,
const py::object& pyparams,
image_array& images,
std::vector<std::vector<param_type> >& params
)
{
const unsigned long num_images = len(pyimages);
// Now copy the data into dlib based objects.
for (unsigned long i = 0; i < num_images; ++i)
{
const unsigned long num_params = len(pyparams[i]);
for (unsigned long j = 0; j < num_params; ++j)
params[i].push_back(extract<param_type>(pyparams[i][j]));
py::iterator image_it = pyimages.begin();
py::iterator params_it = pyparams.begin();
pyimage_to_dlib_image(pyimages[i], images[i]);
for (unsigned long image_idx = 0;
image_it != pyimages.end()
&& params_it != pyparams.end();
++image_it, ++params_it, ++image_idx)
{
for (py::iterator param_it = params_it->begin();
param_it != params_it->end();
++param_it)
params[image_idx].push_back(param_it->cast<param_type>());
pyimage_to_dlib_image(image_it->cast<py::object>(), images[image_idx]);
}
}

View File

@ -3,18 +3,18 @@
#include <dlib/python.h>
#include <dlib/geometry.h>
#include <boost/python/args.hpp>
#include <dlib/image_processing.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
void start_track (
correlation_tracker& tracker,
object img,
py::object img,
const drectangle& bounding_box
)
{
@ -34,7 +34,7 @@ void start_track (
void start_track_rec (
correlation_tracker& tracker,
object img,
py::object img,
const rectangle& bounding_box
)
{
@ -44,7 +44,7 @@ void start_track_rec (
double update (
correlation_tracker& tracker,
object img
py::object img
)
{
if (is_gray_python_image(img))
@ -63,7 +63,7 @@ double update (
double update_guess (
correlation_tracker& tracker,
object img,
py::object img,
const drectangle& bounding_box
)
{
@ -83,7 +83,7 @@ double update_guess (
double update_guess_rec (
correlation_tracker& tracker,
object img,
py::object img,
const rectangle& bounding_box
)
{
@ -95,18 +95,18 @@ drectangle get_position (const correlation_tracker& tracker) { return tracker.ge
// ----------------------------------------------------------------------------------------
void bind_correlation_tracker()
void bind_correlation_tracker(py::module &m)
{
using boost::python::arg;
{
typedef correlation_tracker type;
class_<type>("correlation_tracker", "This is a tool for tracking moving objects in a video stream. You give it \n\
py::class_<type>(m, "correlation_tracker", "This is a tool for tracking moving objects in a video stream. You give it \n\
the bounding box of an object in the first frame and it attempts to track the \n\
object in the box from frame to frame. \n\
This tool is an implementation of the method described in the following paper: \n\
Danelljan, Martin, et al. 'Accurate scale estimation for robust visual \n\
tracking.' Proceedings of the British Machine Vision Conference BMVC. 2014.")
.def("start_track", &::start_track, (arg("image"), arg("bounding_box")), "\
.def(py::init())
.def("start_track", &::start_track, py::arg("image"), py::arg("bounding_box"), "\
requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB image. \n\
- bounding_box.is_empty() == false \n\
@ -115,7 +115,7 @@ void bind_correlation_tracker()
given image. That is, if you call update() with subsequent video frames \n\
then it will try to keep track of the position of the object inside bounding_box. \n\
- #get_position() == bounding_box")
.def("start_track", &::start_track_rec, (arg("image"), arg("bounding_box")), "\
.def("start_track", &::start_track_rec, py::arg("image"), py::arg("bounding_box"), "\
requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB image. \n\
- bounding_box.is_empty() == false \n\
@ -124,14 +124,14 @@ void bind_correlation_tracker()
given image. That is, if you call update() with subsequent video frames \n\
then it will try to keep track of the position of the object inside bounding_box. \n\
- #get_position() == bounding_box")
.def("update", &::update, arg("image"), "\
.def("update", &::update, py::arg("image"), "\
requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB image. \n\
- get_position().is_empty() == false \n\
(i.e. you must have started tracking by calling start_track()) \n\
ensures \n\
- performs: return update(img, get_position())")
.def("update", &::update_guess, (arg("image"), arg("guess")), "\
.def("update", &::update_guess, py::arg("image"), py::arg("guess"), "\
requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB image. \n\
- get_position().is_empty() == false \n\
@ -146,7 +146,7 @@ void bind_correlation_tracker()
- Returns the peak to side-lobe ratio. This is a number that measures how \n\
confident the tracker is that the object is inside #get_position(). \n\
Larger values indicate higher confidence.")
.def("update", &::update_guess_rec, (arg("image"), arg("guess")), "\
.def("update", &::update_guess_rec, py::arg("image"), py::arg("guess"), "\
requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB image. \n\
- get_position().is_empty() == false \n\

View File

@ -3,18 +3,16 @@
#include <dlib/python.h>
#include "testing_results.h"
#include <boost/shared_ptr.hpp>
#include <boost/python/args.hpp>
#include <dlib/svm.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
typedef matrix<double,0,1> sample_type;
namespace py = pybind11;
typedef matrix<double,0,1> sample_type;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
template <typename decision_function>
double predict (
const decision_function& df,
@ -31,21 +29,22 @@ double predict (
std::ostringstream sout;
sout << "Input vector should have " << df.basis_vectors(0).size()
<< " dimensions, not " << samp.size() << ".";
PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
boost::python::throw_error_already_set();
PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
throw py::error_already_set();
}
return df(samp);
}
template <typename kernel_type>
void add_df (
py::module& m,
const std::string name
)
{
typedef decision_function<kernel_type> df_type;
class_<df_type>(name.c_str())
py::class_<df_type>(m, name.c_str())
.def("__call__", &predict<df_type>)
.def_pickle(serialize_pickle<df_type>());
.def(py::pickle(&getstate<df_type>, &setstate<df_type>));
}
template <typename df_type>
@ -55,8 +54,8 @@ typename df_type::sample_type get_weights(
{
if (df.basis_vectors.size() == 0)
{
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
boost::python::throw_error_already_set();
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
throw py::error_already_set();
}
df_type temp = simplify_linear_decision_function(df);
return temp.basis_vectors(0);
@ -69,8 +68,8 @@ typename df_type::scalar_type get_bias(
{
if (df.basis_vectors.size() == 0)
{
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
boost::python::throw_error_already_set();
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
throw py::error_already_set();
}
return df.b;
}
@ -83,23 +82,24 @@ void set_bias(
{
if (df.basis_vectors.size() == 0)
{
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
boost::python::throw_error_already_set();
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
throw py::error_already_set();
}
df.b = b;
}
template <typename kernel_type>
void add_linear_df (
py::module &m,
const std::string name
)
{
typedef decision_function<kernel_type> df_type;
class_<df_type>(name.c_str())
py::class_<df_type>(m, name.c_str())
.def("__call__", predict<df_type>)
.add_property("weights", &get_weights<df_type>)
.add_property("bias", get_bias<df_type>, set_bias<df_type>)
.def_pickle(serialize_pickle<df_type>());
.def_property_readonly("weights", &get_weights<df_type>)
.def_property("bias", get_bias<df_type>, set_bias<df_type>)
.def(py::pickle(&getstate<df_type>, &setstate<df_type>));
}
// ----------------------------------------------------------------------------------------
@ -158,103 +158,102 @@ ranking_test _test_ranking_function2 (
) { return ranking_test(test_ranking_function(funct, sample)); }
void bind_decision_functions()
void bind_decision_functions(py::module &m)
{
using boost::python::arg;
add_linear_df<linear_kernel<sample_type> >("_decision_function_linear");
add_linear_df<sparse_linear_kernel<sparse_vect> >("_decision_function_sparse_linear");
add_linear_df<linear_kernel<sample_type> >(m, "_decision_function_linear");
add_linear_df<sparse_linear_kernel<sparse_vect> >(m, "_decision_function_sparse_linear");
add_df<histogram_intersection_kernel<sample_type> >("_decision_function_histogram_intersection");
add_df<sparse_histogram_intersection_kernel<sparse_vect> >("_decision_function_sparse_histogram_intersection");
add_df<histogram_intersection_kernel<sample_type> >(m, "_decision_function_histogram_intersection");
add_df<sparse_histogram_intersection_kernel<sparse_vect> >(m, "_decision_function_sparse_histogram_intersection");
add_df<polynomial_kernel<sample_type> >("_decision_function_polynomial");
add_df<sparse_polynomial_kernel<sparse_vect> >("_decision_function_sparse_polynomial");
add_df<polynomial_kernel<sample_type> >(m, "_decision_function_polynomial");
add_df<sparse_polynomial_kernel<sparse_vect> >(m, "_decision_function_sparse_polynomial");
add_df<radial_basis_kernel<sample_type> >("_decision_function_radial_basis");
add_df<sparse_radial_basis_kernel<sparse_vect> >("_decision_function_sparse_radial_basis");
add_df<radial_basis_kernel<sample_type> >(m, "_decision_function_radial_basis");
add_df<sparse_radial_basis_kernel<sparse_vect> >(m, "_decision_function_sparse_radial_basis");
add_df<sigmoid_kernel<sample_type> >("_decision_function_sigmoid");
add_df<sparse_sigmoid_kernel<sparse_vect> >("_decision_function_sparse_sigmoid");
add_df<sigmoid_kernel<sample_type> >(m, "_decision_function_sigmoid");
add_df<sparse_sigmoid_kernel<sparse_vect> >(m, "_decision_function_sparse_sigmoid");
def("test_binary_decision_function", _test_binary_decision_function<linear_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<sparse_linear_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<radial_basis_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<sparse_radial_basis_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<polynomial_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<sparse_polynomial_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<histogram_intersection_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<sparse_histogram_intersection_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<sigmoid_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("labels")));
def("test_binary_decision_function", _test_binary_decision_function<sparse_sigmoid_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("labels")));
m.def("test_binary_decision_function", _test_binary_decision_function<linear_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_linear_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<radial_basis_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_radial_basis_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<polynomial_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_polynomial_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<histogram_intersection_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_histogram_intersection_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sigmoid_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_sigmoid_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
def("test_regression_function", _test_regression_function<linear_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<sparse_linear_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<radial_basis_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<sparse_radial_basis_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<histogram_intersection_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<sparse_histogram_intersection_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<sigmoid_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<sparse_sigmoid_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<polynomial_kernel<sample_type> >,
(arg("function"), arg("samples"), arg("targets")));
def("test_regression_function", _test_regression_function<sparse_polynomial_kernel<sparse_vect> >,
(arg("function"), arg("samples"), arg("targets")));
m.def("test_regression_function", _test_regression_function<linear_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_linear_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<radial_basis_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_radial_basis_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<histogram_intersection_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_histogram_intersection_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sigmoid_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_sigmoid_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<polynomial_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_polynomial_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
def("test_ranking_function", _test_ranking_function1<linear_kernel<sample_type> >,
(arg("function"), arg("samples")));
def("test_ranking_function", _test_ranking_function1<sparse_linear_kernel<sparse_vect> >,
(arg("function"), arg("samples")));
def("test_ranking_function", _test_ranking_function2<linear_kernel<sample_type> >,
(arg("function"), arg("sample")));
def("test_ranking_function", _test_ranking_function2<sparse_linear_kernel<sparse_vect> >,
(arg("function"), arg("sample")));
m.def("test_ranking_function", _test_ranking_function1<linear_kernel<sample_type> >,
py::arg("function"), py::arg("samples"));
m.def("test_ranking_function", _test_ranking_function1<sparse_linear_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"));
m.def("test_ranking_function", _test_ranking_function2<linear_kernel<sample_type> >,
py::arg("function"), py::arg("sample"));
m.def("test_ranking_function", _test_ranking_function2<sparse_linear_kernel<sparse_vect> >,
py::arg("function"), py::arg("sample"));
class_<binary_test>("_binary_test")
py::class_<binary_test>(m, "_binary_test")
.def("__str__", binary_test__str__)
.def("__repr__", binary_test__repr__)
.add_property("class1_accuracy", &binary_test::class1_accuracy,
.def_readwrite("class1_accuracy", &binary_test::class1_accuracy,
"A value between 0 and 1, measures accuracy on the +1 class.")
.add_property("class2_accuracy", &binary_test::class2_accuracy,
.def_readwrite("class2_accuracy", &binary_test::class2_accuracy,
"A value between 0 and 1, measures accuracy on the -1 class.");
class_<ranking_test>("_ranking_test")
py::class_<ranking_test>(m, "_ranking_test")
.def("__str__", ranking_test__str__)
.def("__repr__", ranking_test__repr__)
.add_property("ranking_accuracy", &ranking_test::ranking_accuracy,
.def_readwrite("ranking_accuracy", &ranking_test::ranking_accuracy,
"A value between 0 and 1, measures the fraction of times a relevant sample was ordered before a non-relevant sample.")
.add_property("mean_ap", &ranking_test::mean_ap,
.def_readwrite("mean_ap", &ranking_test::mean_ap,
"A value between 0 and 1, measures the mean average precision of the ranking.");
class_<regression_test>("_regression_test")
py::class_<regression_test>(m, "_regression_test")
.def("__str__", regression_test__str__)
.def("__repr__", regression_test__repr__)
.add_property("mean_average_error", &regression_test::mean_average_error,
.def_readwrite("mean_average_error", &regression_test::mean_average_error,
"The mean average error of a regression function on a dataset.")
.add_property("mean_error_stddev", &regression_test::mean_error_stddev,
.def_readwrite("mean_error_stddev", &regression_test::mean_error_stddev,
"The standard deviation of the absolute value of the error of a regression function on a dataset.")
.add_property("mean_squared_error", &regression_test::mean_squared_error,
.def_readwrite("mean_squared_error", &regression_test::mean_squared_error,
"The mean squared error of a regression function on a dataset.")
.add_property("R_squared", &regression_test::R_squared,
.def_readwrite("R_squared", &regression_test::R_squared,
"A value between 0 and 1, measures the squared correlation between the output of a \n"
"regression function and the target values.");
}

View File

@ -1,63 +1,65 @@
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <boost/python.hpp>
#include <pybind11/pybind11.h>
void bind_matrix();
void bind_vector();
void bind_svm_c_trainer();
void bind_decision_functions();
void bind_basic_types();
void bind_other();
void bind_svm_rank_trainer();
void bind_cca();
void bind_sequence_segmenter();
void bind_svm_struct();
void bind_image_classes();
void bind_rectangles();
void bind_object_detection();
void bind_shape_predictors();
void bind_correlation_tracker();
void bind_face_recognition();
void bind_cnn_face_detection();
void bind_global_optimization();
void bind_numpy_returns();
namespace py = pybind11;
void bind_matrix(py::module& m);
void bind_vector(py::module& m);
void bind_svm_c_trainer(py::module& m);
void bind_decision_functions(py::module& m);
void bind_basic_types(py::module& m);
void bind_other(py::module& m);
void bind_svm_rank_trainer(py::module& m);
void bind_cca(py::module& m);
void bind_sequence_segmenter(py::module& m);
void bind_svm_struct(py::module& m);
void bind_image_classes(py::module& m);
void bind_rectangles(py::module& m);
void bind_object_detection(py::module& m);
void bind_shape_predictors(py::module& m);
void bind_correlation_tracker(py::module& m);
void bind_face_recognition(py::module& m);
void bind_cnn_face_detection(py::module& m);
void bind_global_optimization(py::module& m);
void bind_numpy_returns(py::module& m);
#ifndef DLIB_NO_GUI_SUPPORT
void bind_gui();
void bind_gui(py::module& m);
#endif
BOOST_PYTHON_MODULE(dlib)
PYBIND11_MODULE(dlib, m)
{
// Disable printing of the C++ function signature in the python __doc__ string
// since it is full of huge amounts of template clutter.
boost::python::docstring_options options(true,true,false);
py::options options;
options.disable_function_signatures();
#define DLIB_QUOTE_STRING(x) DLIB_QUOTE_STRING2(x)
#define DLIB_QUOTE_STRING2(x) #x
m.attr("__version__") = DLIB_QUOTE_STRING(DLIB_VERSION);
boost::python::scope().attr("__version__") = DLIB_QUOTE_STRING(DLIB_VERSION);
bind_matrix();
bind_vector();
bind_svm_c_trainer();
bind_decision_functions();
bind_basic_types();
bind_other();
bind_svm_rank_trainer();
bind_cca();
bind_sequence_segmenter();
bind_svm_struct();
bind_image_classes();
bind_rectangles();
bind_object_detection();
bind_shape_predictors();
bind_correlation_tracker();
bind_face_recognition();
bind_cnn_face_detection();
bind_global_optimization();
bind_numpy_returns();
bind_matrix(m);
bind_vector(m);
bind_svm_c_trainer(m);
bind_decision_functions(m);
bind_basic_types(m);
bind_other(m);
bind_svm_rank_trainer(m);
bind_cca(m);
bind_sequence_segmenter(m);
bind_svm_struct(m);
bind_image_classes(m);
bind_rectangles(m);
bind_object_detection(m);
bind_shape_predictors(m);
bind_correlation_tracker(m);
bind_face_recognition(m);
bind_cnn_face_detection(m);
bind_global_optimization(m);
bind_numpy_returns(m);
#ifndef DLIB_NO_GUI_SUPPORT
bind_gui();
bind_gui(m);
#endif
}

View File

@ -2,24 +2,25 @@
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include <boost/python/slice.hpp>
#include <dlib/geometry/vector.h>
#include <dlib/dnn.h>
#include <dlib/image_transforms.h>
#include "indexing.h"
#include <dlib/image_io.h>
#include <dlib/clustering.h>
#include <pybind11/stl_bind.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
PYBIND11_MAKE_OPAQUE(std::vector<full_object_detection>);
typedef matrix<double,0,1> cv;
class face_recognition_model_v1
{
@ -31,7 +32,7 @@ public:
}
matrix<double,0,1> compute_face_descriptor (
object img,
py::object img,
const full_object_detection& face,
const int num_jitters
)
@ -41,7 +42,7 @@ public:
}
std::vector<matrix<double,0,1>> compute_face_descriptors (
object img,
py::object img,
const std::vector<full_object_detection>& faces,
const int num_jitters
)
@ -128,12 +129,12 @@ private:
// ----------------------------------------------------------------------------------------
boost::python::list chinese_whispers_clustering(boost::python::list descriptors, float threshold)
py::list chinese_whispers_clustering(py::list descriptors, float threshold)
{
DLIB_CASSERT(threshold > 0);
boost::python::list clusters;
py::list clusters;
size_t num_descriptors = len(descriptors);
size_t num_descriptors = py::len(descriptors);
// This next bit of code creates a graph of connected objects and then uses the Chinese
// whispers graph clustering algorithm to identify how many objects there are and which
@ -144,8 +145,8 @@ boost::python::list chinese_whispers_clustering(boost::python::list descriptors,
{
for (size_t j = i; j < num_descriptors; ++j)
{
matrix<double,0,1>& first_descriptor = boost::python::extract<matrix<double,0,1>&>(descriptors[i]);
matrix<double,0,1>& second_descriptor = boost::python::extract<matrix<double,0,1>&>(descriptors[j]);
matrix<double,0,1>& first_descriptor = descriptors[i].cast<matrix<double,0,1>&>();
matrix<double,0,1>& second_descriptor = descriptors[j].cast<matrix<double,0,1>&>();
if (length(first_descriptor-second_descriptor) < threshold)
edges.push_back(sample_pair(i,j));
@ -160,7 +161,7 @@ boost::python::list chinese_whispers_clustering(boost::python::list descriptors,
}
void save_face_chips (
object img,
py::object img,
const std::vector<full_object_detection>& faces,
const std::string& chip_filename,
size_t size = 150,
@ -194,7 +195,7 @@ void save_face_chips (
}
void save_face_chip (
object img,
py::object img,
const full_object_detection& face,
const std::string& chip_filename,
size_t size = 150,
@ -206,43 +207,39 @@ void save_face_chip (
return;
}
BOOST_PYTHON_FUNCTION_OVERLOADS(save_face_chip_with_defaults, save_face_chip, 3, 5)
BOOST_PYTHON_FUNCTION_OVERLOADS(save_face_chips_with_defaults, save_face_chips, 3, 5)
void bind_face_recognition()
void bind_face_recognition(py::module &m)
{
using boost::python::arg;
{
class_<face_recognition_model_v1>("face_recognition_model_v1", "This object maps human faces into 128D vectors where pictures of the same person are mapped near to each other and pictures of different people are mapped far apart. The constructor loads the face recognition model from a file. The model file is available here: http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2", init<std::string>())
.def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptor, (arg("img"),arg("face"),arg("num_jitters")=0),
py::class_<face_recognition_model_v1>(m, "face_recognition_model_v1", "This object maps human faces into 128D vectors where pictures of the same person are mapped near to each other and pictures of different people are mapped far apart. The constructor loads the face recognition model from a file. The model file is available here: http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2")
.def(py::init<std::string>())
.def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptor, py::arg("img"),py::arg("face"),py::arg("num_jitters")=0,
"Takes an image and a full_object_detection that references a face in that image and converts it into a 128D face descriptor. "
"If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
)
.def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptors, (arg("img"),arg("faces"),arg("num_jitters")=0),
.def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptors, py::arg("img"),py::arg("faces"),py::arg("num_jitters")=0,
"Takes an image and an array of full_object_detections that reference faces in that image and converts them into 128D face descriptors. "
"If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor."
);
}
def("save_face_chip", &save_face_chip, save_face_chip_with_defaults(
m.def("save_face_chip", &save_face_chip,
"Takes an image and a full_object_detection that references a face in that image and saves the face with the specified file name prefix. The face will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
(arg("img"), arg("face"), arg("chip_filename"), arg("size"), arg("padding"))
));
def("save_face_chips", &save_face_chips, save_face_chips_with_defaults(
py::arg("img"), py::arg("face"), py::arg("chip_filename"), py::arg("size")=150, py::arg("padding")=0.25
);
m.def("save_face_chips", &save_face_chips,
"Takes an image and a full_object_detections object that reference faces in that image and saves the faces with the specified file name prefix. The faces will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
(arg("img"), arg("faces"), arg("chip_filename"), arg("size"), arg("padding"))
));
def("chinese_whispers_clustering", &chinese_whispers_clustering, (arg("descriptors"), arg("threshold")),
py::arg("img"), py::arg("faces"), py::arg("chip_filename"), py::arg("size")=150, py::arg("padding")=0.25
);
m.def("chinese_whispers_clustering", &chinese_whispers_clustering, py::arg("descriptors"), py::arg("threshold"),
"Takes a list of descriptors and returns a list that contains a label for each descriptor. Clustering is done using dlib::chinese_whispers."
);
{
{
typedef std::vector<full_object_detection> type;
class_<type>("full_object_detections", "An array of full_object_detection objects.")
.def(vector_indexing_suite<type>())
py::bind_vector<type>(m, "full_object_detections", "An array of full_object_detection objects.")
.def("clear", &type::clear)
.def("resize", resize<type>)
.def_pickle(serialize_pickle<type>());
.def("extend", extend_vector_with_python_list<full_object_detection>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
}

View File

@ -2,67 +2,65 @@
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <boost/shared_ptr.hpp>
#include <dlib/global_optimization.h>
#include <dlib/matrix.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
std::vector<bool> list_to_bool_vector(
const boost::python::list& l
const py::list& l
)
{
std::vector<bool> result(len(l));
for (long i = 0; i < result.size(); ++i)
{
result[i] = extract<bool>(l[i]);
result[i] = l[i].cast<bool>();
cout << "bool val: " << result[i] << endl;
}
return result;
}
matrix<double,0,1> list_to_mat(
const boost::python::list& l
const py::list& l
)
{
matrix<double,0,1> result(len(l));
for (long i = 0; i < result.size(); ++i)
result(i) = extract<double>(l[i]);
result(i) = l[i].cast<double>();
return result;
}
boost::python::list mat_to_list (
py::list mat_to_list (
const matrix<double,0,1>& m
)
{
boost::python::list l;
py::list l;
for (long i = 0; i < m.size(); ++i)
l.append(m(i));
return l;
}
size_t num_function_arguments(object f)
size_t num_function_arguments(py::object f)
{
if (hasattr(f,"func_code"))
return boost::python::extract<std::size_t>(f.attr("func_code").attr("co_argcount"));
return f.attr("func_code").attr("co_argcount").cast<std::size_t>();
else
return boost::python::extract<std::size_t>(f.attr("__code__").attr("co_argcount"));
return f.attr("__code__").attr("co_argcount").cast<std::size_t>();
}
double call_func(object f, const matrix<double,0,1>& args)
double call_func(py::object f, const matrix<double,0,1>& args)
{
const auto num = num_function_arguments(f);
DLIB_CASSERT(num == args.size(),
"The function being optimized takes a number of arguments that doesn't agree with the size of the bounds lists you provided to find_max_global()");
DLIB_CASSERT(0 < num && num < 15, "Functions being optimized must take between 1 and 15 scalar arguments.");
#define CALL_WITH_N_ARGS(N) case N: return extract<double>(dlib::gopt_impl::_cwv(f,args,typename make_compile_time_integer_range<N>::type()));
#define CALL_WITH_N_ARGS(N) case N: return dlib::gopt_impl::_cwv(f,args,typename make_compile_time_integer_range<N>::type()).cast<double>();
switch (num)
{
CALL_WITH_N_ARGS(1)
@ -89,11 +87,11 @@ double call_func(object f, const matrix<double,0,1>& args)
// ----------------------------------------------------------------------------------------
boost::python::tuple py_find_max_global (
object f,
boost::python::list bound1,
boost::python::list bound2,
boost::python::list is_integer_variable,
py::tuple py_find_max_global (
py::object f,
py::list bound1,
py::list bound2,
py::list is_integer_variable,
unsigned long num_function_calls,
double solver_epsilon = 0
)
@ -110,13 +108,13 @@ boost::python::tuple py_find_max_global (
list_to_bool_vector(is_integer_variable), max_function_calls(num_function_calls),
solver_epsilon);
return boost::python::make_tuple(mat_to_list(result.x),result.y);
return py::make_tuple(mat_to_list(result.x),result.y);
}
boost::python::tuple py_find_max_global2 (
object f,
boost::python::list bound1,
boost::python::list bound2,
py::tuple py_find_max_global2 (
py::object f,
py::list bound1,
py::list bound2,
unsigned long num_function_calls,
double solver_epsilon = 0
)
@ -130,16 +128,16 @@ boost::python::tuple py_find_max_global2 (
auto result = find_max_global(func, list_to_mat(bound1), list_to_mat(bound2), max_function_calls(num_function_calls), solver_epsilon);
return boost::python::make_tuple(mat_to_list(result.x),result.y);
return py::make_tuple(mat_to_list(result.x),result.y);
}
// ----------------------------------------------------------------------------------------
boost::python::tuple py_find_min_global (
object f,
boost::python::list bound1,
boost::python::list bound2,
boost::python::list is_integer_variable,
py::tuple py_find_min_global (
py::object f,
py::list bound1,
py::list bound2,
py::list is_integer_variable,
unsigned long num_function_calls,
double solver_epsilon = 0
)
@ -156,13 +154,13 @@ boost::python::tuple py_find_min_global (
list_to_bool_vector(is_integer_variable), max_function_calls(num_function_calls),
solver_epsilon);
return boost::python::make_tuple(mat_to_list(result.x),result.y);
return py::make_tuple(mat_to_list(result.x),result.y);
}
boost::python::tuple py_find_min_global2 (
object f,
boost::python::list bound1,
boost::python::list bound2,
py::tuple py_find_min_global2 (
py::object f,
py::list bound1,
py::list bound2,
unsigned long num_function_calls,
double solver_epsilon = 0
)
@ -176,12 +174,12 @@ boost::python::tuple py_find_min_global2 (
auto result = find_min_global(func, list_to_mat(bound1), list_to_mat(bound2), max_function_calls(num_function_calls), solver_epsilon);
return boost::python::make_tuple(mat_to_list(result.x),result.y);
return py::make_tuple(mat_to_list(result.x),result.y);
}
// ----------------------------------------------------------------------------------------
void bind_global_optimization()
void bind_global_optimization(py::module& m)
{
/*!
requires
@ -232,9 +230,8 @@ void bind_global_optimization()
supplied functions. In most cases, it improves the efficiency of the
optimizer.
!*/
using boost::python::arg;
{
def("find_max_global", &py_find_max_global,
m.def("find_max_global", &py_find_max_global,
"requires \n\
- len(bound1) == len(bound2) == len(is_integer_variable) \n\
- for all valid i: bound1[i] != bound2[i] \n\
@ -283,31 +280,31 @@ ensures \n\
supplied functions. In most cases, it improves the efficiency of the \n\
optimizer."
,
(arg("f"), arg("bound1"), arg("bound2"), arg("is_integer_variable"), arg("num_function_calls"), arg("solver_epsilon")=0)
py::arg("f"), py::arg("bound1"), py::arg("bound2"), py::arg("is_integer_variable"), py::arg("num_function_calls"), py::arg("solver_epsilon")=0
);
}
{
def("find_max_global", &py_find_max_global2,
m.def("find_max_global", &py_find_max_global2,
"This function simply calls the other version of find_max_global() with is_integer_variable set to False for all variables.",
(arg("f"), arg("bound1"), arg("bound2"), arg("num_function_calls"), arg("solver_epsilon")=0)
py::arg("f"), py::arg("bound1"), py::arg("bound2"), py::arg("num_function_calls"), py::arg("solver_epsilon")=0
);
}
{
def("find_min_global", &py_find_min_global,
m.def("find_min_global", &py_find_min_global,
"This function is just like find_max_global(), except it performs minimization rather than maximization."
,
(arg("f"), arg("bound1"), arg("bound2"), arg("is_integer_variable"), arg("num_function_calls"), arg("solver_epsilon")=0)
py::arg("f"), py::arg("bound1"), py::arg("bound2"), py::arg("is_integer_variable"), py::arg("num_function_calls"), py::arg("solver_epsilon")=0
);
}
{
def("find_min_global", &py_find_min_global2,
m.def("find_min_global", &py_find_min_global2,
"This function simply calls the other version of find_min_global() with is_integer_variable set to False for all variables.",
(arg("f"), arg("bound1"), arg("bound2"), arg("num_function_calls"), arg("solver_epsilon")=0)
py::arg("f"), py::arg("bound1"), py::arg("bound2"), py::arg("num_function_calls"), py::arg("solver_epsilon")=0
);
}

View File

@ -1,7 +1,6 @@
#ifndef DLIB_NO_GUI_SUPPORT
#include <dlib/python.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/render_face_detections.h>
@ -10,7 +9,8 @@
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
@ -34,7 +34,7 @@ void image_window_set_image_simple_detector_py (
void image_window_set_image (
image_window& win,
object img
py::object img
)
{
if (is_gray_python_image(img))
@ -73,16 +73,16 @@ void add_overlay_parts (
win.add_overlay(render_face_detections(detection, color));
}
boost::shared_ptr<image_window> make_image_window_from_image(object img)
std::shared_ptr<image_window> make_image_window_from_image(py::object img)
{
boost::shared_ptr<image_window> win(new image_window);
auto win = std::make_shared<image_window>();
image_window_set_image(*win, img);
return win;
}
boost::shared_ptr<image_window> make_image_window_from_image_and_title(object img, const string& title)
std::shared_ptr<image_window> make_image_window_from_image_and_title(py::object img, const string& title)
{
boost::shared_ptr<image_window> win(new image_window);
auto win = std::make_shared<image_window>();
image_window_set_image(*win, img);
win->set_title(title);
return win;
@ -90,35 +90,35 @@ boost::shared_ptr<image_window> make_image_window_from_image_and_title(object im
// ----------------------------------------------------------------------------------------
void bind_gui()
void bind_gui(py::module& m)
{
using boost::python::arg;
{
typedef image_window type;
typedef void (image_window::*set_title_funct)(const std::string&);
typedef void (image_window::*add_overlay_funct)(const std::vector<rectangle>& r, rgb_pixel p);
class_<type,boost::noncopyable>("image_window",
py::class_<type, std::shared_ptr<type>>(m, "image_window",
"This is a GUI window capable of showing images on the screen.")
.def("__init__", make_constructor(&make_image_window_from_image),
.def(py::init())
.def(py::init(&make_image_window_from_image),
"Create an image window that displays the given numpy image.")
.def("__init__", make_constructor(&make_image_window_from_image_and_title),
.def(py::init(&make_image_window_from_image_and_title),
"Create an image window that displays the given numpy image and also has the given title.")
.def("set_image", image_window_set_image, arg("image"),
.def("set_image", image_window_set_image_simple_detector_py, py::arg("detector"),
"Make the image_window display the given HOG detector's filters.")
.def("set_image", image_window_set_image_fhog_detector, py::arg("detector"),
"Make the image_window display the given HOG detector's filters.")
.def("set_image", image_window_set_image, py::arg("image"),
"Make the image_window display the given image.")
.def("set_image", image_window_set_image_fhog_detector, arg("detector"),
"Make the image_window display the given HOG detector's filters.")
.def("set_image", image_window_set_image_simple_detector_py, arg("detector"),
"Make the image_window display the given HOG detector's filters.")
.def("set_title", (set_title_funct)&type::set_title, arg("title"),
.def("set_title", (set_title_funct)&type::set_title, py::arg("title"),
"Set the title of the window to the given value.")
.def("clear_overlay", &type::clear_overlay, "Remove all overlays from the image_window.")
.def("add_overlay", (add_overlay_funct)&type::add_overlay<rgb_pixel>, (arg("rectangles"), arg("color")=rgb_pixel(255, 0, 0)),
.def("add_overlay", (add_overlay_funct)&type::add_overlay<rgb_pixel>, py::arg("rectangles"), py::arg("color")=rgb_pixel(255, 0, 0),
"Add a list of rectangles to the image_window. They will be displayed as red boxes by default, but the color can be passed.")
.def("add_overlay", add_overlay_rect, (arg("rectangle"), arg("color")=rgb_pixel(255, 0, 0)),
.def("add_overlay", add_overlay_rect, py::arg("rectangle"), py::arg("color")=rgb_pixel(255, 0, 0),
"Add a rectangle to the image_window. It will be displayed as a red box by default, but the color can be passed.")
.def("add_overlay", add_overlay_drect, (arg("rectangle"), arg("color")=rgb_pixel(255, 0, 0)),
.def("add_overlay", add_overlay_drect, py::arg("rectangle"), py::arg("color")=rgb_pixel(255, 0, 0),
"Add a rectangle to the image_window. It will be displayed as a red box by default, but the color can be passed.")
.def("add_overlay", add_overlay_parts, (arg("detection"), arg("color")=rgb_pixel(0, 0, 255)),
.def("add_overlay", add_overlay_parts, py::arg("detection"), py::arg("color")=rgb_pixel(0, 0, 255),
"Add full_object_detection parts to the image window. They will be displayed as blue lines by default, but the color can be passed.")
.def("wait_until_closed", &type::wait_until_closed,
"This function blocks until the window is closed.");

View File

@ -1,11 +1,11 @@
#include <dlib/python.h>
#include <boost/python/args.hpp>
#include "dlib/pixel.h"
#include <dlib/image_transforms.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
@ -21,20 +21,19 @@ string print_rgb_pixel_str(const rgb_pixel& p)
string print_rgb_pixel_repr(const rgb_pixel& p)
{
std::ostringstream sout;
sout << "rgb_pixel(" << p.red << "," << p.green << "," << p.blue << ")";
sout << "rgb_pixel(" << (int)p.red << "," << (int)p.green << "," << (int)p.blue << ")";
return sout.str();
}
// ----------------------------------------------------------------------------------------
void bind_image_classes()
void bind_image_classes(py::module& m)
{
using boost::python::arg;
class_<rgb_pixel>("rgb_pixel")
.def(init<unsigned char,unsigned char,unsigned char>( (arg("red"),arg("green"),arg("blue")) ))
py::class_<rgb_pixel>(m, "rgb_pixel")
.def(py::init<unsigned char,unsigned char,unsigned char>(), py::arg("red"), py::arg("green"), py::arg("blue"))
.def("__str__", &print_rgb_pixel_str)
.def("__repr__", &print_rgb_pixel_repr)
.add_property("red", &rgb_pixel::red)
.add_property("green", &rgb_pixel::green)
.add_property("blue", &rgb_pixel::blue);
.def_readwrite("red", &rgb_pixel::red)
.def_readwrite("green", &rgb_pixel::green)
.def_readwrite("blue", &rgb_pixel::blue);
}

View File

@ -3,8 +3,6 @@
#ifndef DLIB_PYTHON_INDEXING_H__
#define DLIB_PYTHON_INDEXING_H__
#include <boost/python/suite/indexing/vector_indexing_suite.hpp>
namespace dlib
{
template <typename T>

View File

@ -2,13 +2,12 @@
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include <dlib/string.h>
#include <boost/python/args.hpp>
#include <pybind11/pybind11.h>
using namespace dlib;
using namespace boost::python;
namespace py = pybind11;
using std::string;
using std::ostringstream;
@ -34,60 +33,59 @@ string matrix_double__str__(matrix<double>& c)
return trim(sout.str());
}
boost::shared_ptr<matrix<double> > make_matrix_from_size(long nr, long nc)
std::shared_ptr<matrix<double> > make_matrix_from_size(long nr, long nc)
{
if (nr < 0 || nc < 0)
{
PyErr_SetString( PyExc_IndexError, "Input dimensions can't be negative."
);
boost::python::throw_error_already_set();
PyErr_SetString( PyExc_IndexError, "Input dimensions can't be negative."
);
throw py::error_already_set();
}
boost::shared_ptr<matrix<double> > temp(new matrix<double>(nr,nc));
auto temp = std::make_shared<matrix<double>>(nr,nc);
*temp = 0;
return temp;
}
boost::shared_ptr<matrix<double> > from_object(object obj)
std::shared_ptr<matrix<double> > from_object(py::object obj)
{
tuple s = extract<tuple>(obj.attr("shape"));
py::tuple s = obj.attr("shape").cast<py::tuple>();
if (len(s) != 2)
{
PyErr_SetString( PyExc_IndexError, "Input must be a matrix or some kind of 2D array."
);
boost::python::throw_error_already_set();
PyErr_SetString( PyExc_IndexError, "Input must be a matrix or some kind of 2D array."
);
throw py::error_already_set();
}
const long nr = extract<long>(s[0]);
const long nc = extract<long>(s[1]);
boost::shared_ptr<matrix<double> > temp(new matrix<double>(nr,nc));
const long nr = s[0].cast<long>();
const long nc = s[1].cast<long>();
auto temp = std::make_shared<matrix<double>>(nr,nc);
for ( long r = 0; r < nr; ++r)
{
for (long c = 0; c < nc; ++c)
{
(*temp)(r,c) = extract<double>(obj[make_tuple(r,c)]);
(*temp)(r,c) = obj[py::make_tuple(r,c)].cast<double>();
}
}
return temp;
}
boost::shared_ptr<matrix<double> > from_list(list l)
std::shared_ptr<matrix<double> > from_list(py::list l)
{
const long nr = len(l);
if (extract<list>(l[0]).check())
const long nr = py::len(l);
if (py::isinstance<py::list>(l[0]))
{
const long nc = len(l[0]);
const long nc = py::len(l[0]);
// make sure all the other rows have the same length
for (long r = 1; r < nr; ++r)
pyassert(len(l[r]) == nc, "All rows of a matrix must have the same number of columns.");
pyassert(py::len(l[r]) == nc, "All rows of a matrix must have the same number of columns.");
boost::shared_ptr<matrix<double> > temp(new matrix<double>(nr,nc));
auto temp = std::make_shared<matrix<double>>(nr,nc);
for ( long r = 0; r < nr; ++r)
{
for (long c = 0; c < nc; ++c)
{
(*temp)(r,c) = extract<double>(l[r][c]);
(*temp)(r,c) = l[r].cast<py::list>()[c].cast<double>();
}
}
return temp;
@ -95,10 +93,10 @@ boost::shared_ptr<matrix<double> > from_list(list l)
else
{
// In this case we treat it like a column vector
boost::shared_ptr<matrix<double> > temp(new matrix<double>(nr,1));
auto temp = std::make_shared<matrix<double>>(nr,1);
for ( long r = 0; r < nr; ++r)
{
(*temp)(r) = extract<double>(l[r]);
(*temp)(r) = l[r].cast<double>();
}
return temp;
}
@ -123,9 +121,9 @@ void mat_row__setitem__(mat_row& c, long p, double val)
p = c.size + p; // negative index
}
if (p > c.size-1) {
PyErr_SetString( PyExc_IndexError, "3 index out of range"
);
boost::python::throw_error_already_set();
PyErr_SetString( PyExc_IndexError, "3 index out of range"
);
throw py::error_already_set();
}
c.data[p] = val;
}
@ -156,9 +154,9 @@ double mat_row__getitem__(mat_row& m, long r)
r = m.size + r; // negative index
}
if (r > m.size-1 || r < 0) {
PyErr_SetString( PyExc_IndexError, "1 index out of range"
);
boost::python::throw_error_already_set();
PyErr_SetString( PyExc_IndexError, "1 index out of range"
);
throw py::error_already_set();
}
return m.data[r];
}
@ -170,40 +168,41 @@ mat_row matrix_double__getitem__(matrix<double>& m, long r)
}
if (r > m.nr()-1 || r < 0) {
PyErr_SetString( PyExc_IndexError, (string("2 index out of range, got ") + cast_to_string(r)).c_str()
);
boost::python::throw_error_already_set();
);
throw py::error_already_set();
}
return mat_row(&m(r,0),m.nc());
}
tuple get_matrix_size(matrix<double>& m)
py::tuple get_matrix_size(matrix<double>& m)
{
return make_tuple(m.nr(), m.nc());
return py::make_tuple(m.nr(), m.nc());
}
void bind_matrix()
void bind_matrix(py::module& m)
{
class_<mat_row>("_row")
py::class_<mat_row>(m, "_row")
.def("__len__", &mat_row__len__)
.def("__repr__", &mat_row__repr__)
.def("__str__", &mat_row__str__)
.def("__setitem__", &mat_row__setitem__)
.def("__getitem__", &mat_row__getitem__);
class_<matrix<double> >("matrix", "This object represents a dense 2D matrix of floating point numbers."
"Moreover, it binds directly to the C++ type dlib::matrix<double>.", init<>())
.def("__init__", make_constructor(&make_matrix_from_size))
.def("set_size", &matrix_set_size, (arg("rows"), arg("cols")), "Set the size of the matrix to the given number of rows and columns.")
.def("__init__", make_constructor(&from_object))
.def("__init__", make_constructor(&from_list))
py::class_<matrix<double>, std::shared_ptr<matrix<double>>>(m, "matrix",
"This object represents a dense 2D matrix of floating point numbers."
"Moreover, it binds directly to the C++ type dlib::matrix<double>.")
.def(py::init<>())
.def(py::init(&from_list))
.def(py::init(&from_object))
.def(py::init(&make_matrix_from_size))
.def("set_size", &matrix_set_size, py::arg("rows"), py::arg("cols"), "Set the size of the matrix to the given number of rows and columns.")
.def("__repr__", &matrix_double__repr__)
.def("__str__", &matrix_double__str__)
.def("nr", &matrix<double>::nr, "Return the number of rows in the matrix.")
.def("nc", &matrix<double>::nc, "Return the number of columns in the matrix.")
.def("__len__", &matrix_double__len__)
.def("__getitem__", &matrix_double__getitem__, with_custodian_and_ward_postcall<0,1>())
.add_property("shape", &get_matrix_size)
.def_pickle(serialize_pickle<matrix<double> >());
.def("__getitem__", &matrix_double__getitem__, py::keep_alive<0,1>())
.def_property_readonly("shape", &get_matrix_size)
.def(py::pickle(&getstate<matrix<double>>, &setstate<matrix<double>>));
}

View File

@ -1,5 +1,4 @@
#include <dlib/python.h>
#include <boost/python/args.hpp>
#include "dlib/pixel.h"
#include <dlib/image_transforms.h>
@ -10,11 +9,12 @@ dlib::rand rnd_jitter;
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
boost::python::list get_jitter_images(object img, size_t num_jitters = 1, bool disturb_colors = false)
py::list get_jitter_images(py::object img, size_t num_jitters = 1, bool disturb_colors = false)
{
if (!is_rgb_python_image(img))
throw dlib::error("Unsupported image type, must be RGB image.");
@ -24,7 +24,7 @@ boost::python::list get_jitter_images(object img, size_t num_jitters = 1, bool d
assign_image(img_mat, numpy_rgb_image(img));
// The top level list (containing 1 or more images) to return to python
boost::python::list jitter_list;
py::list jitter_list;
size_t rows = num_rows(img_mat);
size_t cols = num_columns(img_mat);
@ -43,20 +43,18 @@ boost::python::list get_jitter_images(object img, size_t num_jitters = 1, bool d
npy_uint8 *outdata = (npy_uint8 *) PyArray_DATA((PyArrayObject*) arr);
memcpy(outdata, image_data(crop), rows * width_step(crop));
boost::python::handle<> handle(arr);
py::handle handle(arr);
// Append image to jittered image list
jitter_list.append(object(handle));
jitter_list.append(handle);
}
return jitter_list;
}
BOOST_PYTHON_FUNCTION_OVERLOADS(get_jitter_images_with_defaults, get_jitter_images, 1, 3)
// ----------------------------------------------------------------------------------------
boost::python::list get_face_chips (
object img,
py::list get_face_chips (
py::object img,
const std::vector<full_object_detection>& faces,
size_t size = 150,
float padding = 0.25
@ -69,7 +67,7 @@ boost::python::list get_face_chips (
throw dlib::error("No face were specified in the faces array.");
}
boost::python::list chips_list;
py::list chips_list;
std::vector<chip_details> dets;
for (auto& f : faces)
@ -88,16 +86,16 @@ boost::python::list get_face_chips (
PyObject *arr = PyArray_SimpleNew(3, dims, NPY_UINT8);
npy_uint8 *outdata = (npy_uint8 *) PyArray_DATA((PyArrayObject*) arr);
memcpy(outdata, image_data(chip), rows * width_step(chip));
boost::python::handle<> handle(arr);
py::handle handle(arr);
// Append image to chips list
chips_list.append(object(handle));
chips_list.append(handle);
}
return chips_list;
}
object get_face_chip (
object img,
py::object get_face_chip (
py::object img,
const full_object_detection& face,
size_t size = 150,
float padding = 0.25
@ -115,14 +113,10 @@ object get_face_chip (
PyObject *arr = PyArray_SimpleNew(3, dims, NPY_UINT8);
npy_uint8 *outdata = (npy_uint8 *) PyArray_DATA((PyArrayObject *) arr);
memcpy(outdata, image_data(chip), num_rows(chip) * width_step(chip));
boost::python::handle<> handle(arr);
return object(handle);
py::handle handle(arr);
return handle.cast<py::object>();
}
BOOST_PYTHON_FUNCTION_OVERLOADS(get_face_chip_with_defaults, get_face_chip, 2, 4)
BOOST_PYTHON_FUNCTION_OVERLOADS(get_face_chips_with_defaults, get_face_chips, 2, 4)
// ----------------------------------------------------------------------------------------
// we need this wonky stuff because different versions of numpy's import_array macro
@ -140,25 +134,24 @@ DLIB_NUMPY_IMPORT_ARRAY_RETURN_TYPE import_numpy_stuff()
DLIB_NUMPY_IMPORT_RETURN;
}
void bind_numpy_returns()
void bind_numpy_returns(py::module &m)
{
using boost::python::arg;
import_numpy_stuff();
def("jitter_image", &get_jitter_images, get_jitter_images_with_defaults(
m.def("jitter_image", &get_jitter_images,
"Takes an image and returns a list of jittered images."
"The returned list contains num_jitters images (default is 1)."
"If disturb_colors is set to True, the colors of the image are disturbed (default is False)",
(arg("img"), arg("num_jitters"), arg("disturb_colors"))
));
py::arg("img"), py::arg("num_jitters")=1, py::arg("disturb_colors")=false
);
def("get_face_chip", &get_face_chip, get_face_chip_with_defaults(
m.def("get_face_chip", &get_face_chip,
"Takes an image and a full_object_detection that references a face in that image and returns the face as a Numpy array representing the image. The face will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
(arg("img"), arg("face"), arg("size"), arg("padding"))
));
py::arg("img"), py::arg("face"), py::arg("size")=150, py::arg("padding")=0.25
);
def("get_face_chips", &get_face_chips, get_face_chips_with_defaults(
m.def("get_face_chips", &get_face_chips,
"Takes an image and a full_object_detections object that reference faces in that image and returns the faces as a list of Numpy arrays representing the image. The faces will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
(arg("img"), arg("faces"), arg("size"), arg("padding"))
));
py::arg("img"), py::arg("faces"), py::arg("size")=150, py::arg("padding")=0.25
);
}

View File

@ -1,25 +1,22 @@
#include <dlib/python.h>
#include <boost/python/args.hpp>
#include "dlib/pixel.h"
#include <dlib/image_transforms.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
boost::python::list get_jitter_images(object img, size_t num_jitters = 1, bool disturb_colors = false)
py::list get_jitter_images(py::object img, size_t num_jitters = 1, bool disturb_colors = false)
{
throw dlib::error("jitter_image is only supported if you compiled dlib with numpy installed!");
}
BOOST_PYTHON_FUNCTION_OVERLOADS(get_jitter_images_with_defaults, get_jitter_images, 1, 3)
// ----------------------------------------------------------------------------------------
boost::python::list get_face_chips (
object img,
py::list get_face_chips (
py::object img,
const std::vector<full_object_detection>& faces,
size_t size = 150,
float padding = 0.25
@ -28,8 +25,8 @@ boost::python::list get_face_chips (
throw dlib::error("get_face_chips is only supported if you compiled dlib with numpy installed!");
}
object get_face_chip (
object img,
py::object get_face_chip (
py::object img,
const full_object_detection& face,
size_t size = 150,
float padding = 0.25
@ -38,30 +35,24 @@ object get_face_chip (
throw dlib::error("get_face_chip is only supported if you compiled dlib with numpy installed!");
}
BOOST_PYTHON_FUNCTION_OVERLOADS(get_face_chip_with_defaults, get_face_chip, 2, 4)
BOOST_PYTHON_FUNCTION_OVERLOADS(get_face_chips_with_defaults, get_face_chips, 2, 4)
// ----------------------------------------------------------------------------------------
void bind_numpy_returns()
void bind_numpy_returns(py::module &m)
{
using boost::python::arg;
def("jitter_image", &get_jitter_images, get_jitter_images_with_defaults(
m.def("jitter_image", &get_jitter_images,
"Takes an image and returns a list of jittered images."
"The returned list contains num_jitters images (default is 1)."
"If disturb_colors is set to True, the colors of the image are disturbed (default is False)",
(arg("img"), arg("num_jitters"), arg("disturb_colors"))
));
py::arg("img"), py::arg("num_jitters")=1, py::arg("disturb_colors")=false
);
def("get_face_chip", &get_face_chip, get_face_chip_with_defaults(
m.def("get_face_chip", &get_face_chip,
"Takes an image and a full_object_detection that references a face in that image and returns the face as a Numpy array representing the image. The face will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
(arg("img"), arg("face"), arg("size"), arg("padding"))
));
py::arg("img"), py::arg("face"), py::arg("size")=150, py::arg("padding")=0.25
);
def("get_face_chips", &get_face_chips, get_face_chips_with_defaults(
m.def("get_face_chips", &get_face_chips,
"Takes an image and a full_object_detections object that reference faces in that image and returns the faces as a list of Numpy arrays representing the image. The faces will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
(arg("img"), arg("faces"), arg("size"), arg("padding"))
));
}
py::arg("img"), py::arg("faces"), py::arg("size")=150, py::arg("padding")=0.25
);
}

View File

@ -3,7 +3,6 @@
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>
#include "simple_object_detector.h"
@ -12,7 +11,8 @@
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
@ -26,13 +26,13 @@ string print_simple_test_results(const simple_test_results& r)
// ----------------------------------------------------------------------------------------
inline simple_object_detector_py train_simple_object_detector_on_images_py (
const boost::python::list& pyimages,
const boost::python::list& pyboxes,
const py::list& pyimages,
const py::list& pyboxes,
const simple_object_detector_training_options& options
)
{
const unsigned long num_images = len(pyimages);
if (num_images != len(pyboxes))
const unsigned long num_images = py::len(pyimages);
if (num_images != py::len(pyboxes))
throw dlib::error("The length of the boxes list must match the length of the images list.");
// We never have any ignore boxes for this version of the API.
@ -44,14 +44,14 @@ inline simple_object_detector_py train_simple_object_detector_on_images_py (
}
inline simple_test_results test_simple_object_detector_with_images_py (
const boost::python::list& pyimages,
const boost::python::list& pyboxes,
const py::list& pyimages,
const py::list& pyboxes,
simple_object_detector& detector,
const unsigned int upsampling_amount
)
{
const unsigned long num_images = len(pyimages);
if (num_images != len(pyboxes))
const unsigned long num_images = py::len(pyimages);
if (num_images != py::len(pyboxes))
throw dlib::error("The length of the boxes list must match the length of the images list.");
// We never have any ignore boxes for this version of the API.
@ -65,8 +65,8 @@ inline simple_test_results test_simple_object_detector_with_images_py (
// ----------------------------------------------------------------------------------------
inline simple_test_results test_simple_object_detector_py_with_images_py (
const boost::python::list& pyimages,
const boost::python::list& pyboxes,
const py::list& pyimages,
const py::list& pyboxes,
simple_object_detector_py& detector,
const int upsampling_amount
)
@ -85,9 +85,9 @@ inline simple_test_results test_simple_object_detector_py_with_images_py (
// ----------------------------------------------------------------------------------------
inline void find_candidate_object_locations_py (
object pyimage,
boost::python::list& pyboxes,
boost::python::tuple pykvals,
py::object pyimage,
py::list& pyboxes,
py::tuple pykvals,
unsigned long min_size,
unsigned long max_merging_iterations
)
@ -101,20 +101,20 @@ inline void find_candidate_object_locations_py (
else
throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
if (boost::python::len(pykvals) != 3)
if (py::len(pykvals) != 3)
throw dlib::error("kvals must be a tuple with three elements for start, end, num.");
double start = extract<double>(pykvals[0]);
double end = extract<double>(pykvals[1]);
long num = extract<long>(pykvals[2]);
double start = pykvals[0].cast<double>();
double end = pykvals[1].cast<double>();
long num = pykvals[2].cast<long>();
matrix_range_exp<double> kvals = linspace(start, end, num);
std::vector<rectangle> rects;
const long count = len(pyboxes);
const long count = py::len(pyboxes);
// Copy any rectangles in the input pyboxes into rects so that any rectangles will be
// properly deduped in the resulting output.
for (long i = 0; i < count; ++i)
rects.push_back(extract<rectangle>(pyboxes[i]));
rects.push_back(pyboxes[i].cast<rectangle>());
// Find candidate objects
find_candidate_object_locations(image, rects, kvals, min_size, max_merging_iterations);
@ -126,42 +126,35 @@ inline void find_candidate_object_locations_py (
// ----------------------------------------------------------------------------------------
void bind_object_detection()
void bind_object_detection(py::module& m)
{
using boost::python::arg;
{
typedef simple_object_detector_training_options type;
class_<type>("simple_object_detector_training_options",
py::class_<type>(m, "simple_object_detector_training_options",
"This object is a container for the options to the train_simple_object_detector() routine.")
.add_property("be_verbose", &type::be_verbose,
&type::be_verbose,
.def(py::init())
.def_readwrite("be_verbose", &type::be_verbose,
"If true, train_simple_object_detector() will print out a lot of information to the screen while training.")
.add_property("add_left_right_image_flips", &type::add_left_right_image_flips,
&type::add_left_right_image_flips,
.def_readwrite("add_left_right_image_flips", &type::add_left_right_image_flips,
"if true, train_simple_object_detector() will assume the objects are \n\
left/right symmetric and add in left right flips of the training \n\
images. This doubles the size of the training dataset.")
.add_property("detection_window_size", &type::detection_window_size,
&type::detection_window_size,
.def_readwrite("detection_window_size", &type::detection_window_size,
"The sliding window used will have about this many pixels inside it.")
.add_property("C", &type::C,
&type::C,
.def_readwrite("C", &type::C,
"C is the usual SVM C regularization parameter. So it is passed to \n\
structural_object_detection_trainer::set_c(). Larger values of C \n\
will encourage the trainer to fit the data better but might lead to \n\
overfitting. Therefore, you must determine the proper setting of \n\
this parameter experimentally.")
.add_property("epsilon", &type::epsilon,
&type::epsilon,
.def_readwrite("epsilon", &type::epsilon,
"epsilon is the stopping epsilon. Smaller values make the trainer's \n\
solver more accurate but might take longer to train.")
.add_property("num_threads", &type::num_threads,
&type::num_threads,
.def_readwrite("num_threads", &type::num_threads,
"train_simple_object_detector() will use this many threads of \n\
execution. Set this to the number of CPU cores on your machine to \n\
obtain the fastest training speed.")
.add_property("upsample_limit", &type::upsample_limit,
&type::upsample_limit,
.def_readwrite("upsample_limit", &type::upsample_limit,
"train_simple_object_detector() will upsample images if needed \n\
no more than upsample_limit times. Value 0 will forbid trainer to \n\
upsample any images. If trainer is unable to fit all boxes with \n\
@ -171,18 +164,16 @@ Values higher than 2 (default) are not recommended.");
}
{
typedef simple_test_results type;
class_<type>("simple_test_results")
.add_property("precision", &type::precision)
.add_property("recall", &type::recall)
.add_property("average_precision", &type::average_precision)
py::class_<type>(m, "simple_test_results")
.def_readwrite("precision", &type::precision)
.def_readwrite("recall", &type::recall)
.def_readwrite("average_precision", &type::average_precision)
.def("__str__", &::print_simple_test_results);
}
// Here, kvals is actually the result of linspace(start, end, num) and it is different from kvals used
// in find_candidate_object_locations(). See dlib/image_transforms/segment_image_abstract.h for more details.
def("find_candidate_object_locations", find_candidate_object_locations_py,
(arg("image"), arg("rects"), arg("kvals")=boost::python::make_tuple(50, 200, 3),
arg("min_size")=20, arg("max_merging_iterations")=50),
m.def("find_candidate_object_locations", find_candidate_object_locations_py, py::arg("image"), py::arg("rects"), py::arg("kvals")=py::make_tuple(50, 200, 3), py::arg("min_size")=20, py::arg("max_merging_iterations")=50,
"Returns found candidate objects\n\
requires\n\
- image == an image object which is a numpy ndarray\n\
@ -218,11 +209,11 @@ ensures\n\
that:\n\
- #rects[i] != rects[j]");
def("get_frontal_face_detector", get_frontal_face_detector,
m.def("get_frontal_face_detector", get_frontal_face_detector,
"Returns the default face detector");
def("train_simple_object_detector", train_simple_object_detector,
(arg("dataset_filename"), arg("detector_output_filename"), arg("options")),
m.def("train_simple_object_detector", train_simple_object_detector,
py::arg("dataset_filename"), py::arg("detector_output_filename"), py::arg("options"),
"requires \n\
- options.C > 0 \n\
ensures \n\
@ -236,8 +227,8 @@ ensures \n\
way to train a basic object detector. \n\
- The trained object detector is serialized to the file detector_output_filename.");
def("train_simple_object_detector", train_simple_object_detector_on_images_py,
(arg("images"), arg("boxes"), arg("options")),
m.def("train_simple_object_detector", train_simple_object_detector_on_images_py,
py::arg("images"), py::arg("boxes"), py::arg("options"),
"requires \n\
- options.C > 0 \n\
- len(images) == len(boxes) \n\
@ -252,9 +243,9 @@ ensures \n\
way to train a basic object detector. \n\
- The trained object detector is returned.");
def("test_simple_object_detector", test_simple_object_detector,
m.def("test_simple_object_detector", test_simple_object_detector,
// Please see test_simple_object_detector for the reason upsampling_amount is -1
(arg("dataset_filename"), arg("detector_filename"), arg("upsampling_amount")=-1),
py::arg("dataset_filename"), py::arg("detector_filename"), py::arg("upsampling_amount")=-1,
"requires \n\
- Optionally, take the number of times to upsample the testing images (upsampling_amount >= 0). \n\
ensures \n\
@ -271,8 +262,8 @@ ensures \n\
metrics. "
);
def("test_simple_object_detector", test_simple_object_detector_with_images_py,
(arg("images"), arg("boxes"), arg("detector"), arg("upsampling_amount")=0),
m.def("test_simple_object_detector", test_simple_object_detector_with_images_py,
py::arg("images"), py::arg("boxes"), py::arg("detector"), py::arg("upsampling_amount")=0,
"requires \n\
- len(images) == len(boxes) \n\
- images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
@ -290,9 +281,9 @@ ensures \n\
metrics. "
);
def("test_simple_object_detector", test_simple_object_detector_py_with_images_py,
m.def("test_simple_object_detector", test_simple_object_detector_py_with_images_py,
// Please see test_simple_object_detector_py_with_images_py for the reason upsampling_amount is -1
(arg("images"), arg("boxes"), arg("detector"), arg("upsampling_amount")=-1),
py::arg("images"), py::arg("boxes"), py::arg("detector"), py::arg("upsampling_amount")=-1,
"requires \n\
- len(images) == len(boxes) \n\
- images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
@ -310,13 +301,13 @@ ensures \n\
);
{
typedef simple_object_detector type;
class_<type>("fhog_object_detector",
py::class_<type, std::shared_ptr<type>>(m, "fhog_object_detector",
"This object represents a sliding window histogram-of-oriented-gradients based object detector.")
.def("__init__", make_constructor(&load_object_from_file<type>),
.def(py::init(&load_object_from_file<type>),
"Loads an object detector from a file that contains the output of the \n\
train_simple_object_detector() routine or a serialized C++ object of type\n\
object_detector<scan_fhog_pyramid<pyramid_down<6>>>.")
.def("__call__", run_detector_with_upscale2, (arg("image"), arg("upsample_num_times")=0),
.def("__call__", run_detector_with_upscale2, py::arg("image"), py::arg("upsample_num_times")=0,
"requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
image. \n\
@ -326,7 +317,7 @@ ensures \n\
a list of detections. \n\
- Upsamples the image upsample_num_times before running the basic \n\
detector.")
.def("run", run_rect_detector, (arg("image"), arg("upsample_num_times")=0, arg("adjust_threshold")=0.0),
.def("run", run_rect_detector, py::arg("image"), py::arg("upsample_num_times")=0, py::arg("adjust_threshold")=0.0,
"requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
image. \n\
@ -336,7 +327,7 @@ ensures \n\
a tuple of (list of detections, list of scores, list of weight_indices). \n\
- Upsamples the image upsample_num_times before running the basic \n\
detector.")
.def("run_multiple", run_multiple_rect_detectors,(arg("detectors"), arg("image"), arg("upsample_num_times")=0, arg("adjust_threshold")=0.0),
.def_static("run_multiple", run_multiple_rect_detectors, py::arg("detectors"), py::arg("image"), py::arg("upsample_num_times")=0, py::arg("adjust_threshold")=0.0,
"requires \n\
- detectors is a list of detectors. \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
@ -347,18 +338,17 @@ ensures \n\
a tuple of (list of detections, list of scores, list of weight_indices). \n\
- Upsamples the image upsample_num_times before running the basic \n\
detector.")
.staticmethod("run_multiple")
.def("save", save_simple_object_detector, (arg("detector_output_filename")), "Save a simple_object_detector to the provided path.")
.def_pickle(serialize_pickle<type>());
.def("save", save_simple_object_detector, py::arg("detector_output_filename"), "Save a simple_object_detector to the provided path.")
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef simple_object_detector_py type;
class_<type>("simple_object_detector",
py::class_<type, std::shared_ptr<type>>(m, "simple_object_detector",
"This object represents a sliding window histogram-of-oriented-gradients based object detector.")
.def("__init__", make_constructor(&load_object_from_file<type>),
.def(py::init(&load_object_from_file<type>),
"Loads a simple_object_detector from a file that contains the output of the \n\
train_simple_object_detector() routine.")
.def("__call__", &type::run_detector1, (arg("image"), arg("upsample_num_times"), arg("adjust_threshold")=0.0),
.def("__call__", &type::run_detector1, py::arg("image"), py::arg("upsample_num_times"),
"requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
image. \n\
@ -370,15 +360,15 @@ ensures \n\
detector. If you don't know how many times you want to upsample then \n\
don't provide a value for upsample_num_times and an appropriate \n\
default will be used.")
.def("__call__", &type::run_detector2, (arg("image")),
.def("__call__", &type::run_detector2, py::arg("image"),
"requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
image. \n\
ensures \n\
- This function runs the object detector on the input image and returns \n\
a list of detections.")
.def("save", save_simple_object_detector_py, (arg("detector_output_filename")), "Save a simple_object_detector to the provided path.")
.def_pickle(serialize_pickle<type>());
.def("save", save_simple_object_detector_py, py::arg("detector_output_filename"), "Save a simple_object_detector to the provided path.")
.def(py::pickle(&getstate<type>, &setstate<type>));
}
}

View File

@ -2,17 +2,15 @@
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include <dlib/data_io.h>
#include <dlib/sparse_vector.h>
#include <boost/python/args.hpp>
#include <dlib/optimization.h>
#include <dlib/statistics/running_gradient.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
@ -32,14 +30,14 @@ void _make_sparse_vector2 (
make_sparse_vector_inplace(v[i]);
}
boost::python::tuple _load_libsvm_formatted_data(
py::tuple _load_libsvm_formatted_data(
const std::string& file_name
)
{
std::vector<sparse_vect> samples;
std::vector<double> labels;
load_libsvm_formatted_data(file_name, samples, labels);
return boost::python::make_tuple(samples, labels);
return py::make_tuple(samples, labels);
}
void _save_libsvm_formatted_data (
@ -54,7 +52,7 @@ void _save_libsvm_formatted_data (
// ----------------------------------------------------------------------------------------
boost::python::list _max_cost_assignment (
py::list _max_cost_assignment (
const matrix<double>& cost
)
{
@ -70,7 +68,7 @@ boost::python::list _max_cost_assignment (
double _assignment_cost (
const matrix<double>& cost,
const boost::python::list& assignment
const py::list& assignment
)
{
return assignment_cost(cost, python_list_to_vector<long>(assignment));
@ -79,7 +77,7 @@ double _assignment_cost (
// ----------------------------------------------------------------------------------------
size_t py_count_steps_without_decrease (
boost::python::object arr,
py::object arr,
double probability_of_decrease
)
{
@ -90,7 +88,7 @@ size_t py_count_steps_without_decrease (
// ----------------------------------------------------------------------------------------
size_t py_count_steps_without_decrease_robust (
boost::python::object arr,
py::object arr,
double probability_of_decrease,
double quantile_discard
)
@ -110,11 +108,9 @@ void hit_enter_to_continue()
// ----------------------------------------------------------------------------------------
void bind_other()
void bind_other(py::module &m)
{
using boost::python::arg;
def("max_cost_assignment", _max_cost_assignment, (arg("cost")),
m.def("max_cost_assignment", _max_cost_assignment, py::arg("cost"),
"requires \n\
- cost.nr() == cost.nc() \n\
(i.e. the input must be a square matrix) \n\
@ -135,7 +131,7 @@ ensures \n\
of the largest to the smallest value in cost is no more than about 1e16. "
);
def("assignment_cost", _assignment_cost, (arg("cost"),arg("assignment")),
m.def("assignment_cost", _assignment_cost, py::arg("cost"),py::arg("assignment"),
"requires \n\
- cost.nr() == cost.nc() \n\
(i.e. the input must be a square matrix) \n\
@ -151,7 +147,7 @@ ensures \n\
sum over i: cost[i][assignment[i]] "
);
def("make_sparse_vector", _make_sparse_vector ,
m.def("make_sparse_vector", _make_sparse_vector ,
"This function modifies its argument so that it is a properly sorted sparse vector. \n\
This means that the elements of the sparse vector will be ordered so that pairs \n\
with smaller indices come first. Additionally, there won't be any pairs with \n\
@ -159,10 +155,10 @@ identical indices. If such pairs were present in the input sparse vector then
their values will be added together and only one pair with their index will be \n\
present in the output. "
);
def("make_sparse_vector", _make_sparse_vector2 ,
m.def("make_sparse_vector", _make_sparse_vector2 ,
"This function modifies a sparse_vectors object so that all elements it contains are properly sorted sparse vectors.");
def("load_libsvm_formatted_data",_load_libsvm_formatted_data, (arg("file_name")),
m.def("load_libsvm_formatted_data",_load_libsvm_formatted_data, py::arg("file_name"),
"ensures \n\
- Attempts to read a file of the given name that should contain libsvm \n\
formatted data. The data is returned as a tuple where the first tuple \n\
@ -170,20 +166,20 @@ present in the output. "
labels. "
);
def("save_libsvm_formatted_data",_save_libsvm_formatted_data, (arg("file_name"), arg("samples"), arg("labels")),
m.def("save_libsvm_formatted_data",_save_libsvm_formatted_data, py::arg("file_name"), py::arg("samples"), py::arg("labels"),
"requires \n\
- len(samples) == len(labels) \n\
ensures \n\
- saves the data to the given file in libsvm format "
);
def("hit_enter_to_continue", hit_enter_to_continue,
m.def("hit_enter_to_continue", hit_enter_to_continue,
"Asks the user to hit enter to continue and pauses until they do so.");
def("count_steps_without_decrease",py_count_steps_without_decrease, (arg("time_series"), arg("probability_of_decrease")=0.51),
m.def("count_steps_without_decrease",py_count_steps_without_decrease, py::arg("time_series"), py::arg("probability_of_decrease")=0.51,
"requires \n\
- time_series must be a one dimensional array of real numbers. \n\
- 0.5 < probability_of_decrease < 1 \n\
@ -230,7 +226,7 @@ ensures \n\
!*/
);
def("count_steps_without_decrease_robust",py_count_steps_without_decrease_robust, (arg("time_series"), arg("probability_of_decrease")=0.51, arg("quantile_discard")=0.1),
m.def("count_steps_without_decrease_robust",py_count_steps_without_decrease_robust, py::arg("time_series"), py::arg("probability_of_decrease")=0.51, py::arg("quantile_discard")=0.1,
"requires \n\
- time_series must be a one dimensional array of real numbers. \n\
- 0.5 < probability_of_decrease < 1 \n\

View File

@ -2,13 +2,16 @@
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <pybind11/stl_bind.h>
#include "indexing.h"
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
PYBIND11_MAKE_OPAQUE(std::vector<rectangle>);
// ----------------------------------------------------------------------------------------
@ -67,13 +70,12 @@ string print_rectangle_repr(const rect_type& r)
// ----------------------------------------------------------------------------------------
void bind_rectangles()
void bind_rectangles(py::module& m)
{
using boost::python::arg;
{
typedef rectangle type;
class_<type>("rectangle", "This object represents a rectangular area of an image.")
.def(init<long,long,long,long>( (arg("left"),arg("top"),arg("right"),arg("bottom")) ))
py::class_<type>(m, "rectangle", "This object represents a rectangular area of an image.")
.def(py::init<long,long,long,long>(), py::arg("left"),py::arg("top"),py::arg("right"),py::arg("bottom"))
.def("area", &::area)
.def("left", &::left)
.def("top", &::top)
@ -84,20 +86,20 @@ void bind_rectangles()
.def("is_empty", &::is_empty<type>)
.def("center", &::center<type>)
.def("dcenter", &::dcenter<type>)
.def("contains", &::contains<type>, arg("point"))
.def("contains", &::contains_xy<type>, (arg("x"), arg("y")))
.def("contains", &::contains_rec<type>, (arg("rectangle")))
.def("intersect", &::intersect<type>, (arg("rectangle")))
.def("contains", &::contains<type>, py::arg("point"))
.def("contains", &::contains_xy<type>, py::arg("x"), py::arg("y"))
.def("contains", &::contains_rec<type>, py::arg("rectangle"))
.def("intersect", &::intersect<type>, py::arg("rectangle"))
.def("__str__", &::print_rectangle_str<type>)
.def("__repr__", &::print_rectangle_repr<type>)
.def(self == self)
.def(self != self)
.def_pickle(serialize_pickle<type>());
.def(py::self == py::self)
.def(py::self != py::self)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef drectangle type;
class_<type>("drectangle", "This object represents a rectangular area of an image with floating point coordinates.")
.def(init<double,double,double,double>( (arg("left"),arg("top"),arg("right"),arg("bottom")) ))
py::class_<type>(m, "drectangle", "This object represents a rectangular area of an image with floating point coordinates.")
.def(py::init<double,double,double,double>(), py::arg("left"), py::arg("top"), py::arg("right"), py::arg("bottom"))
.def("area", &::darea)
.def("left", &::dleft)
.def("top", &::dtop)
@ -108,23 +110,23 @@ void bind_rectangles()
.def("is_empty", &::is_empty<type>)
.def("center", &::center<type>)
.def("dcenter", &::dcenter<type>)
.def("contains", &::contains<type>, arg("point"))
.def("contains", &::contains_xy<type>, (arg("x"), arg("y")))
.def("contains", &::contains_rec<type>, (arg("rectangle")))
.def("intersect", &::intersect<type>, (arg("rectangle")))
.def("contains", &::contains<type>, py::arg("point"))
.def("contains", &::contains_xy<type>, py::arg("x"), py::arg("y"))
.def("contains", &::contains_rec<type>, py::arg("rectangle"))
.def("intersect", &::intersect<type>, py::arg("rectangle"))
.def("__str__", &::print_rectangle_str<type>)
.def("__repr__", &::print_rectangle_repr<type>)
.def(self == self)
.def(self != self)
.def_pickle(serialize_pickle<type>());
.def(py::self == py::self)
.def(py::self != py::self)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef std::vector<rectangle> type;
class_<type>("rectangles", "An array of rectangle objects.")
.def(vector_indexing_suite<type>())
py::bind_vector<type>(m, "rectangles", "An array of rectangle objects.")
.def("clear", &type::clear)
.def("resize", resize<type>)
.def_pickle(serialize_pickle<type>());
.def("extend", extend_vector_with_python_list<rectangle>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
}

View File

@ -2,15 +2,12 @@
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include <dlib/svm_threaded.h>
#include <boost/python/suite/indexing/vector_indexing_suite.hpp>
#include <boost/python/args.hpp>
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
typedef matrix<double,0,1> dense_vect;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
@ -776,11 +773,12 @@ const segmenter_test cross_validate_sequence_segmenter2 (
// ----------------------------------------------------------------------------------------
void bind_sequence_segmenter()
void bind_sequence_segmenter(py::module& m)
{
class_<segmenter_params>("segmenter_params",
py::class_<segmenter_params>(m, "segmenter_params",
"This class is used to define all the optional parameters to the \n\
train_sequence_segmenter() and cross_validate_sequence_segmenter() routines. ")
.def(py::init<>())
.def_readwrite("use_BIO_model", &segmenter_params::use_BIO_model)
.def_readwrite("use_high_order_features", &segmenter_params::use_high_order_features)
.def_readwrite("allow_negative_weights", &segmenter_params::allow_negative_weights)
@ -792,36 +790,35 @@ train_sequence_segmenter() and cross_validate_sequence_segmenter() routines. "
.def_readwrite("be_verbose", &segmenter_params::be_verbose)
.def("__repr__",&segmenter_params__repr__)
.def("__str__",&segmenter_params__str__)
.def_pickle(serialize_pickle<segmenter_params>());
.def(py::pickle(&getstate<segmenter_params>, &setstate<segmenter_params>));
class_<segmenter_type> ("segmenter_type", "This object represents a sequence segmenter and is the type of object "
py::class_<segmenter_type> (m, "segmenter_type", "This object represents a sequence segmenter and is the type of object "
"returned by the dlib.train_sequence_segmenter() routine.")
.def("__call__", &segmenter_type::segment_sequence_dense)
.def("__call__", &segmenter_type::segment_sequence_sparse)
.def_readonly("weights", &segmenter_type::get_weights)
.def_pickle(serialize_pickle<segmenter_type>());
.def_property_readonly("weights", &segmenter_type::get_weights)
.def(py::pickle(&getstate<segmenter_type>, &setstate<segmenter_type>));
class_<segmenter_test> ("segmenter_test", "This object is the output of the dlib.test_sequence_segmenter() and "
py::class_<segmenter_test> (m, "segmenter_test", "This object is the output of the dlib.test_sequence_segmenter() and "
"dlib.cross_validate_sequence_segmenter() routines.")
.def_readwrite("precision", &segmenter_test::precision)
.def_readwrite("recall", &segmenter_test::recall)
.def_readwrite("f1", &segmenter_test::f1)
.def("__repr__",&segmenter_test__repr__)
.def("__str__",&segmenter_test__str__)
.def_pickle(serialize_pickle<segmenter_test>());
.def(py::pickle(&getstate<segmenter_test>, &setstate<segmenter_test>));
using boost::python::arg;
def("train_sequence_segmenter", train_dense, (arg("samples"), arg("segments"), arg("params")=segmenter_params()));
def("train_sequence_segmenter", train_sparse, (arg("samples"), arg("segments"), arg("params")=segmenter_params()));
m.def("train_sequence_segmenter", train_dense, py::arg("samples"), py::arg("segments"), py::arg("params")=segmenter_params());
m.def("train_sequence_segmenter", train_sparse, py::arg("samples"), py::arg("segments"), py::arg("params")=segmenter_params());
def("test_sequence_segmenter", test_sequence_segmenter1);
def("test_sequence_segmenter", test_sequence_segmenter2);
m.def("test_sequence_segmenter", test_sequence_segmenter1);
m.def("test_sequence_segmenter", test_sequence_segmenter2);
def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter1,
(arg("samples"), arg("segments"), arg("folds"), arg("params")=segmenter_params()));
def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter2,
(arg("samples"), arg("segments"), arg("folds"), arg("params")=segmenter_params()));
m.def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter1,
py::arg("samples"), py::arg("segments"), py::arg("folds"), py::arg("params")=segmenter_params());
m.def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter2,
py::arg("samples"), py::arg("segments"), py::arg("folds"), py::arg("params")=segmenter_params());
}

View File

@ -3,24 +3,24 @@
#include <dlib/python.h>
#include <dlib/geometry.h>
#include <boost/python/args.hpp>
#include <dlib/image_processing.h>
#include "shape_predictor.h"
#include "conversion.h"
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
full_object_detection run_predictor (
shape_predictor& predictor,
object img,
object rect
py::object img,
py::object rect
)
{
rectangle box = extract<rectangle>(rect);
rectangle box = rect.cast<rectangle>();
if (is_gray_python_image(img))
{
return predictor(numpy_gray_image(img), box);
@ -54,7 +54,7 @@ point full_obj_det_part (const full_object_detection& detection, const unsigned
if (idx >= detection.num_parts())
{
PyErr_SetString(PyExc_IndexError, "Index out of range");
boost::python::throw_error_already_set();
throw py::error_already_set();
}
return detection.part(idx);
}
@ -68,28 +68,31 @@ std::vector<point> full_obj_det_parts (const full_object_detection& detection)
return parts;
}
boost::shared_ptr<full_object_detection> full_obj_det_init(object& pyrect, object& pyparts)
std::shared_ptr<full_object_detection> full_obj_det_init(py::object& pyrect, py::object& pyparts)
{
const unsigned long num_parts = len(pyparts);
const unsigned long num_parts = py::len(pyparts);
std::vector<point> parts(num_parts);
rectangle rect = extract<rectangle>(pyrect);
rectangle rect = pyrect.cast<rectangle>();
py::iterator parts_it = pyparts.begin();
for (unsigned long j = 0; j < num_parts; ++j)
parts[j] = extract<point>(pyparts[j]);
for (unsigned long j = 0;
parts_it != pyparts.end();
++j, ++parts_it)
parts[j] = parts_it->cast<point>();
return boost::shared_ptr<full_object_detection>(new full_object_detection(rect, parts));
return std::make_shared<full_object_detection>(rect, parts);
}
// ----------------------------------------------------------------------------------------
inline shape_predictor train_shape_predictor_on_images_py (
const boost::python::list& pyimages,
const boost::python::list& pydetections,
const py::list& pyimages,
const py::list& pydetections,
const shape_predictor_training_options& options
)
{
const unsigned long num_images = len(pyimages);
if (num_images != len(pydetections))
const unsigned long num_images = py::len(pyimages);
if (num_images != py::len(pydetections))
throw dlib::error("The length of the detections list must match the length of the images list.");
std::vector<std::vector<full_object_detection> > detections(num_images);
@ -101,15 +104,15 @@ inline shape_predictor train_shape_predictor_on_images_py (
inline double test_shape_predictor_with_images_py (
const boost::python::list& pyimages,
const boost::python::list& pydetections,
const boost::python::list& pyscales,
const py::list& pyimages,
const py::list& pydetections,
const py::list& pyscales,
const shape_predictor& predictor
)
{
const unsigned long num_images = len(pyimages);
const unsigned long num_scales = len(pyscales);
if (num_images != len(pydetections))
const unsigned long num_images = py::len(pyimages);
const unsigned long num_scales = py::len(pyscales);
if (num_images != py::len(pydetections))
throw dlib::error("The length of the detections list must match the length of the images list.");
if (num_scales > 0 && num_scales != num_images)
@ -124,17 +127,21 @@ inline double test_shape_predictor_with_images_py (
// Now copy the data into dlib based objects so we can call the testing routine.
for (unsigned long i = 0; i < num_images; ++i)
{
const unsigned long num_boxes = len(pydetections[i]);
for (unsigned long j = 0; j < num_boxes; ++j)
detections[i].push_back(extract<full_object_detection>(pydetections[i][j]));
const unsigned long num_boxes = py::len(pydetections[i]);
for (py::iterator det_it = pydetections[i].begin();
det_it != pydetections[i].end();
++det_it)
detections[i].push_back(det_it->cast<full_object_detection>());
pyimage_to_dlib_image(pyimages[i], images[i]);
if (num_scales > 0)
{
if (num_boxes != len(pyscales[i]))
if (num_boxes != py::len(pyscales[i]))
throw dlib::error("The length of the scales list must match the length of the detections list.");
for (unsigned long j = 0; j < num_boxes; ++j)
scales[i].push_back(extract<double>(pyscales[i][j]));
for (py::iterator scale_it = pyscales[i].begin();
scale_it != pyscales[i].end();
++scale_it)
scales[i].push_back(scale_it->cast<double>());
}
}
@ -142,90 +149,80 @@ inline double test_shape_predictor_with_images_py (
}
inline double test_shape_predictor_with_images_no_scales_py (
const boost::python::list& pyimages,
const boost::python::list& pydetections,
const py::list& pyimages,
const py::list& pydetections,
const shape_predictor& predictor
)
{
boost::python::list pyscales;
py::list pyscales;
return test_shape_predictor_with_images_py(pyimages, pydetections, pyscales, predictor);
}
// ----------------------------------------------------------------------------------------
void bind_shape_predictors()
void bind_shape_predictors(py::module &m)
{
using boost::python::arg;
{
typedef full_object_detection type;
class_<type>("full_object_detection",
py::class_<type, std::shared_ptr<type>>(m, "full_object_detection",
"This object represents the location of an object in an image along with the \
positions of each of its constituent parts.")
.def("__init__", make_constructor(&full_obj_det_init),
.def(py::init(&full_obj_det_init),
"requires \n\
- rect: dlib rectangle \n\
- parts: list of dlib points")
.add_property("rect", &full_obj_det_get_rect, "Bounding box from the underlying detector. Parts can be outside box if appropriate.")
.add_property("num_parts", &full_obj_det_num_parts, "The number of parts of the object.")
.def("part", &full_obj_det_part, (arg("idx")), "A single part of the object as a dlib point.")
.def_property_readonly("rect", &full_obj_det_get_rect, "Bounding box from the underlying detector. Parts can be outside box if appropriate.")
.def_property_readonly("num_parts", &full_obj_det_num_parts, "The number of parts of the object.")
.def("part", &full_obj_det_part, py::arg("idx"), "A single part of the object as a dlib point.")
.def("parts", &full_obj_det_parts, "A vector of dlib points representing all of the parts.")
.def_pickle(serialize_pickle<type>());
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef shape_predictor_training_options type;
class_<type>("shape_predictor_training_options",
py::class_<type>(m, "shape_predictor_training_options",
"This object is a container for the options to the train_shape_predictor() routine.")
.add_property("be_verbose", &type::be_verbose,
&type::be_verbose,
.def(py::init())
.def_readwrite("be_verbose", &type::be_verbose,
"If true, train_shape_predictor() will print out a lot of information to stdout while training.")
.add_property("cascade_depth", &type::cascade_depth,
&type::cascade_depth,
.def_readwrite("cascade_depth", &type::cascade_depth,
"The number of cascades created to train the model with.")
.add_property("tree_depth", &type::tree_depth,
&type::tree_depth,
.def_readwrite("tree_depth", &type::tree_depth,
"The depth of the trees used in each cascade. There are pow(2, get_tree_depth()) leaves in each tree")
.add_property("num_trees_per_cascade_level", &type::num_trees_per_cascade_level,
&type::num_trees_per_cascade_level,
.def_readwrite("num_trees_per_cascade_level", &type::num_trees_per_cascade_level,
"The number of trees created for each cascade.")
.add_property("nu", &type::nu,
&type::nu,
.def_readwrite("nu", &type::nu,
"The regularization parameter. Larger values of this parameter \
will cause the algorithm to fit the training data better but may also \
cause overfitting. The value must be in the range (0, 1].")
.add_property("oversampling_amount", &type::oversampling_amount,
&type::oversampling_amount,
.def_readwrite("oversampling_amount", &type::oversampling_amount,
"The number of randomly selected initial starting points sampled for each training example")
.add_property("feature_pool_size", &type::feature_pool_size,
&type::feature_pool_size,
.def_readwrite("feature_pool_size", &type::feature_pool_size,
"Number of pixels used to generate features for the random trees.")
.add_property("lambda_param", &type::lambda_param,
&type::lambda_param,
.def_readwrite("lambda_param", &type::lambda_param,
"Controls how tight the feature sampling should be. Lower values enforce closer features.")
.add_property("num_test_splits", &type::num_test_splits,
&type::num_test_splits,
.def_readwrite("num_test_splits", &type::num_test_splits,
"Number of split features at each node to sample. The one that gives the best split is chosen.")
.add_property("feature_pool_region_padding", &type::feature_pool_region_padding,
&type::feature_pool_region_padding,
.def_readwrite("feature_pool_region_padding", &type::feature_pool_region_padding,
"Size of region within which to sample features for the feature pool, \
e.g a padding of 0.5 would cause the algorithm to sample pixels from a box that was 2x2 pixels")
.add_property("random_seed", &type::random_seed,
&type::random_seed,
.def_readwrite("random_seed", &type::random_seed,
"The random seed used by the internal random number generator")
.def("__str__", &::print_shape_predictor_training_options)
.def_pickle(serialize_pickle<type>());
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef shape_predictor type;
class_<type>("shape_predictor",
py::class_<type, std::shared_ptr<type>>(m, "shape_predictor",
"This object is a tool that takes in an image region containing some object and \
outputs a set of point locations that define the pose of the object. The classic \
example of this is human face pose prediction, where you take an image of a human \
face as input and are expected to identify the locations of important facial \
landmarks such as the corners of the mouth and eyes, tip of the nose, and so forth.")
.def("__init__", make_constructor(&load_object_from_file<type>),
.def(py::init())
.def(py::init(&load_object_from_file<type>),
"Loads a shape_predictor from a file that contains the output of the \n\
train_shape_predictor() routine.")
.def("__call__", &run_predictor, (arg("image"), arg("box")),
.def("__call__", &run_predictor, py::arg("image"), py::arg("box"),
"requires \n\
- image is a numpy ndarray containing either an 8bit grayscale or RGB \n\
image. \n\
@ -233,12 +230,12 @@ train_shape_predictor() routine.")
ensures \n\
- This function runs the shape predictor on the input image and returns \n\
a single full_object_detection.")
.def("save", save_shape_predictor, (arg("predictor_output_filename")), "Save a shape_predictor to the provided path.")
.def_pickle(serialize_pickle<type>());
.def("save", save_shape_predictor, py::arg("predictor_output_filename"), "Save a shape_predictor to the provided path.")
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
def("train_shape_predictor", train_shape_predictor_on_images_py,
(arg("images"), arg("object_detections"), arg("options")),
m.def("train_shape_predictor", train_shape_predictor_on_images_py,
py::arg("images"), py::arg("object_detections"), py::arg("options"),
"requires \n\
- options.lambda_param > 0 \n\
- 0 < options.nu <= 1 \n\
@ -252,8 +249,8 @@ ensures \n\
shape_predictor based on the provided labeled images, full_object_detections, and options.\n\
- The trained shape_predictor is returned");
def("train_shape_predictor", train_shape_predictor,
(arg("dataset_filename"), arg("predictor_output_filename"), arg("options")),
m.def("train_shape_predictor", train_shape_predictor,
py::arg("dataset_filename"), py::arg("predictor_output_filename"), py::arg("options"),
"requires \n\
- options.lambda_param > 0 \n\
- 0 < options.nu <= 1 \n\
@ -265,8 +262,8 @@ ensures \n\
XML format produced by dlib's save_image_dataset_metadata() routine. \n\
- The trained shape predictor is serialized to the file predictor_output_filename.");
def("test_shape_predictor", test_shape_predictor_py,
(arg("dataset_filename"), arg("predictor_filename")),
m.def("test_shape_predictor", test_shape_predictor_py,
py::arg("dataset_filename"), py::arg("predictor_filename"),
"ensures \n\
- Loads an image dataset from dataset_filename. We assume dataset_filename is \n\
a file using the XML format written by save_image_dataset_metadata(). \n\
@ -279,8 +276,8 @@ ensures \n\
shape_predictor_trainer() routine. Therefore, see the documentation \n\
for shape_predictor_trainer() for a detailed definition of the mean average error.");
def("test_shape_predictor", test_shape_predictor_with_images_no_scales_py,
(arg("images"), arg("detections"), arg("shape_predictor")),
m.def("test_shape_predictor", test_shape_predictor_with_images_no_scales_py,
py::arg("images"), py::arg("detections"), py::arg("shape_predictor"),
"requires \n\
- len(images) == len(object_detections) \n\
- images should be a list of numpy matrices that represent images, either RGB or grayscale. \n\
@ -296,8 +293,8 @@ ensures \n\
for shape_predictor_trainer() for a detailed definition of the mean average error.");
def("test_shape_predictor", test_shape_predictor_with_images_py,
(arg("images"), arg("detections"), arg("scales"), arg("shape_predictor")),
m.def("test_shape_predictor", test_shape_predictor_with_images_py,
py::arg("images"), py::arg("detections"), py::arg("scales"), py::arg("shape_predictor"),
"requires \n\
- len(images) == len(object_detections) \n\
- len(object_detections) == len(scales) \n\

View File

@ -5,10 +5,11 @@
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <boost/python/args.hpp>
#include <dlib/geometry.h>
#include <dlib/image_processing/frontal_face_detector.h>
namespace py = pybind11;
namespace dlib
{
typedef object_detector<scan_fhog_pyramid<pyramid_down<6> > > simple_object_detector;
@ -35,7 +36,7 @@ namespace dlib
inline std::vector<dlib::rectangle> run_detector_with_upscale1 (
dlib::simple_object_detector& detector,
boost::python::object img,
py::object img,
const unsigned int upsampling_amount,
const double adjust_threshold,
std::vector<double>& detection_confidences,
@ -115,7 +116,7 @@ namespace dlib
inline std::vector<dlib::rectangle> run_detectors_with_upscale1 (
std::vector<simple_object_detector >& detectors,
boost::python::object img,
py::object img,
const unsigned int upsampling_amount,
const double adjust_threshold,
std::vector<double>& detection_confidences,
@ -195,7 +196,7 @@ namespace dlib
inline std::vector<dlib::rectangle> run_detector_with_upscale2 (
dlib::simple_object_detector& detector,
boost::python::object img,
py::object img,
const unsigned int upsampling_amount
)
@ -209,13 +210,13 @@ namespace dlib
detection_confidences, weight_indices);
}
inline boost::python::tuple run_rect_detector (
inline py::tuple run_rect_detector (
dlib::simple_object_detector& detector,
boost::python::object img,
py::object img,
const unsigned int upsampling_amount,
const double adjust_threshold)
{
boost::python::tuple t;
py::tuple t;
std::vector<double> detection_confidences;
std::vector<double> weight_indices;
@ -225,26 +226,26 @@ namespace dlib
adjust_threshold,
detection_confidences, weight_indices);
return boost::python::make_tuple(rectangles,
detection_confidences, weight_indices);
return py::make_tuple(rectangles,
detection_confidences, weight_indices);
}
inline boost::python::tuple run_multiple_rect_detectors (
boost::python::list& detectors,
boost::python::object img,
inline py::tuple run_multiple_rect_detectors (
py::list& detectors,
py::object img,
const unsigned int upsampling_amount,
const double adjust_threshold)
{
boost::python::tuple t;
py::tuple t;
std::vector<simple_object_detector > vector_detectors;
const unsigned long num_detectors = len(detectors);
// Now copy the data into dlib based objects.
for (unsigned long i = 0; i < num_detectors; ++i)
{
vector_detectors.push_back(boost::python::extract<simple_object_detector >(detectors[i]));
vector_detectors.push_back(detectors[i].cast<simple_object_detector >());
}
std::vector<double> detection_confidences;
std::vector<double> weight_indices;
std::vector<rectangle> rectangles;
@ -253,8 +254,8 @@ namespace dlib
adjust_threshold,
detection_confidences, weight_indices);
return boost::python::make_tuple(rectangles,
detection_confidences, weight_indices);
return py::make_tuple(rectangles,
detection_confidences, weight_indices);
}
@ -268,13 +269,13 @@ namespace dlib
simple_object_detector_py(simple_object_detector& _detector, unsigned int _upsampling_amount) :
detector(_detector), upsampling_amount(_upsampling_amount) {}
std::vector<dlib::rectangle> run_detector1 (boost::python::object img,
std::vector<dlib::rectangle> run_detector1 (py::object img,
const unsigned int upsampling_amount_)
{
return run_detector_with_upscale2(detector, img, upsampling_amount_);
}
std::vector<dlib::rectangle> run_detector2 (boost::python::object img)
std::vector<dlib::rectangle> run_detector2 (py::object img)
{
return run_detector_with_upscale2(detector, img, upsampling_amount);
}

View File

@ -3,14 +3,11 @@
#include <dlib/python.h>
#include "testing_results.h"
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include <dlib/svm_threaded.h>
#include <boost/python/args.hpp>
using namespace dlib;
using namespace std;
using namespace boost::python;
typedef matrix<double,0,1> sample_type;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
@ -75,26 +72,27 @@ template <typename trainer_type>
double get_c_class2 ( const trainer_type& trainer) { return trainer.get_c_class2(); }
template <typename trainer_type>
class_<trainer_type> setup_trainer (
py::class_<trainer_type> setup_trainer (
py::module& m,
const std::string& name
)
{
return class_<trainer_type>(name.c_str())
return py::class_<trainer_type>(m, name.c_str())
.def("train", train<trainer_type>)
.def("set_c", set_c<trainer_type>)
.add_property("c_class1", get_c_class1<trainer_type>, set_c_class1<trainer_type>)
.add_property("c_class2", get_c_class2<trainer_type>, set_c_class2<trainer_type>)
.add_property("epsilon", get_epsilon<trainer_type>, set_epsilon<trainer_type>);
.def_property("c_class1", get_c_class1<trainer_type>, set_c_class1<trainer_type>)
.def_property("c_class2", get_c_class2<trainer_type>, set_c_class2<trainer_type>)
.def_property("epsilon", get_epsilon<trainer_type>, set_epsilon<trainer_type>);
}
template <typename trainer_type>
class_<trainer_type> setup_trainer2 (
py::class_<trainer_type> setup_trainer2 (
py::module& m,
const std::string& name
)
{
return setup_trainer<trainer_type>(name)
.add_property("cache_size", get_cache_size<trainer_type>, set_cache_size<trainer_type>);
return setup_trainer<trainer_type>(m, name)
.def_property("cache_size", get_cache_size<trainer_type>, set_cache_size<trainer_type>);
}
void set_gamma (
@ -165,79 +163,80 @@ const binary_test _cross_validate_trainer_t (
// ----------------------------------------------------------------------------------------
void bind_svm_c_trainer()
void bind_svm_c_trainer(py::module& m)
{
using boost::python::arg;
namespace py = pybind11;
{
typedef svm_c_trainer<radial_basis_kernel<sample_type> > T;
setup_trainer2<T>("svm_c_trainer_radial_basis")
.add_property("gamma", get_gamma, set_gamma);
def("cross_validate_trainer", _cross_validate_trainer<T>,
(arg("trainer"),arg("x"),arg("y"),arg("folds")));
def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
(arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
setup_trainer2<T>(m, "svm_c_trainer_radial_basis")
.def_property("gamma", get_gamma, set_gamma);
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef svm_c_trainer<sparse_radial_basis_kernel<sparse_vect> > T;
setup_trainer2<T>("svm_c_trainer_sparse_radial_basis")
.add_property("gamma", get_gamma_sparse, set_gamma_sparse);
def("cross_validate_trainer", _cross_validate_trainer<T>,
(arg("trainer"),arg("x"),arg("y"),arg("folds")));
def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
(arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
setup_trainer2<T>(m, "svm_c_trainer_sparse_radial_basis")
.def_property("gamma", get_gamma_sparse, set_gamma_sparse);
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef svm_c_trainer<histogram_intersection_kernel<sample_type> > T;
setup_trainer2<T>("svm_c_trainer_histogram_intersection");
def("cross_validate_trainer", _cross_validate_trainer<T>,
(arg("trainer"),arg("x"),arg("y"),arg("folds")));
def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
(arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
setup_trainer2<T>(m, "svm_c_trainer_histogram_intersection");
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef svm_c_trainer<sparse_histogram_intersection_kernel<sparse_vect> > T;
setup_trainer2<T>("svm_c_trainer_sparse_histogram_intersection");
def("cross_validate_trainer", _cross_validate_trainer<T>,
(arg("trainer"),arg("x"),arg("y"),arg("folds")));
def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
(arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
setup_trainer2<T>(m, "svm_c_trainer_sparse_histogram_intersection");
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef svm_c_linear_trainer<linear_kernel<sample_type> > T;
setup_trainer<T>("svm_c_trainer_linear")
.add_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
.add_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
.add_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
.add_property("has_prior", &T::has_prior)
setup_trainer<T>(m, "svm_c_trainer_linear")
.def(py::init())
.def_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
.def_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
.def_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
.def_property_readonly("has_prior", &T::has_prior)
.def("set_prior", &T::set_prior)
.def("be_verbose", &T::be_verbose)
.def("be_quiet", &T::be_quiet);
def("cross_validate_trainer", _cross_validate_trainer<T>,
(arg("trainer"),arg("x"),arg("y"),arg("folds")));
def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
(arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef svm_c_linear_trainer<sparse_linear_kernel<sparse_vect> > T;
setup_trainer<T>("svm_c_trainer_sparse_linear")
.add_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
.add_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
.add_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
.add_property("has_prior", &T::has_prior)
setup_trainer<T>(m, "svm_c_trainer_sparse_linear")
.def_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
.def_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
.def_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
.def_property_readonly("has_prior", &T::has_prior)
.def("set_prior", &T::set_prior)
.def("be_verbose", &T::be_verbose)
.def("be_quiet", &T::be_quiet);
def("cross_validate_trainer", _cross_validate_trainer<T>,
(arg("trainer"),arg("x"),arg("y"),arg("folds")));
def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
(arg("trainer"),arg("x"),arg("y"),arg("folds"),arg("num_threads")));
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
}

View File

@ -2,20 +2,22 @@
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include <dlib/svm.h>
#include <boost/python/suite/indexing/vector_indexing_suite.hpp>
#include "testing_results.h"
#include <boost/python/args.hpp>
#include <pybind11/stl_bind.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
typedef matrix<double,0,1> sample_type;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
typedef std::vector<ranking_pair<sample_type> > ranking_pairs;
typedef std::vector<ranking_pair<sparse_vect> > sparse_ranking_pairs;
PYBIND11_MAKE_OPAQUE(ranking_pairs);
PYBIND11_MAKE_OPAQUE(sparse_ranking_pairs);
// ----------------------------------------------------------------------------------------
@ -23,7 +25,7 @@ namespace dlib
{
template <typename T>
bool operator== (
const ranking_pair<T>& ,
const ranking_pair<T>&,
const ranking_pair<T>&
)
{
@ -84,16 +86,18 @@ double get_c (const trainer_type& trainer)
template <typename trainer>
void add_ranker (
py::module& m,
const char* name
)
{
class_<trainer>(name)
.add_property("epsilon", get_epsilon<trainer>, set_epsilon<trainer>)
.add_property("c", get_c<trainer>, set_c<trainer>)
.add_property("max_iterations", &trainer::get_max_iterations, &trainer::set_max_iterations)
.add_property("force_last_weight_to_1", &trainer::forces_last_weight_to_1, &trainer::force_last_weight_to_1)
.add_property("learns_nonnegative_weights", &trainer::learns_nonnegative_weights, &trainer::set_learns_nonnegative_weights)
.add_property("has_prior", &trainer::has_prior)
py::class_<trainer>(m, name)
.def(py::init())
.def_property("epsilon", get_epsilon<trainer>, set_epsilon<trainer>)
.def_property("c", get_c<trainer>, set_c<trainer>)
.def_property("max_iterations", &trainer::get_max_iterations, &trainer::set_max_iterations)
.def_property("force_last_weight_to_1", &trainer::forces_last_weight_to_1, &trainer::force_last_weight_to_1)
.def_property("learns_nonnegative_weights", &trainer::learns_nonnegative_weights, &trainer::set_learns_nonnegative_weights)
.def_property_readonly("has_prior", &trainer::has_prior)
.def("train", train1<trainer>)
.def("train", train2<trainer>)
.def("set_prior", &trainer::set_prior)
@ -120,42 +124,41 @@ const ranking_test _cross_ranking_validate_trainer (
// ----------------------------------------------------------------------------------------
void bind_svm_rank_trainer()
void bind_svm_rank_trainer(py::module& m)
{
using boost::python::arg;
class_<ranking_pair<sample_type> >("ranking_pair")
.add_property("relevant", &ranking_pair<sample_type>::relevant)
.add_property("nonrelevant", &ranking_pair<sample_type>::nonrelevant)
.def_pickle(serialize_pickle<ranking_pair<sample_type> >());
py::class_<ranking_pair<sample_type> >(m, "ranking_pair")
.def(py::init())
.def_readwrite("relevant", &ranking_pair<sample_type>::relevant)
.def_readwrite("nonrelevant", &ranking_pair<sample_type>::nonrelevant)
.def(py::pickle(&getstate<ranking_pair<sample_type>>, &setstate<ranking_pair<sample_type>>));
class_<ranking_pair<sparse_vect> >("sparse_ranking_pair")
.add_property("relevant", &ranking_pair<sparse_vect>::relevant)
.add_property("nonrelevant", &ranking_pair<sparse_vect>::nonrelevant)
.def_pickle(serialize_pickle<ranking_pair<sparse_vect> >());
py::class_<ranking_pair<sparse_vect> >(m, "sparse_ranking_pair")
.def(py::init())
.def_readwrite("relevant", &ranking_pair<sparse_vect>::relevant)
.def_readwrite("nonrelevant", &ranking_pair<sparse_vect>::nonrelevant)
.def(py::pickle(&getstate<ranking_pair<sparse_vect>>, &setstate<ranking_pair<sparse_vect>>));
typedef std::vector<ranking_pair<sample_type> > ranking_pairs;
class_<ranking_pairs>("ranking_pairs")
.def(vector_indexing_suite<ranking_pairs>())
py::bind_vector<ranking_pairs>(m, "ranking_pairs")
.def("clear", &ranking_pairs::clear)
.def("resize", resize<ranking_pairs>)
.def_pickle(serialize_pickle<ranking_pairs>());
.def("extend", extend_vector_with_python_list<ranking_pair<sample_type>>)
.def(py::pickle(&getstate<ranking_pairs>, &setstate<ranking_pairs>));
typedef std::vector<ranking_pair<sparse_vect> > sparse_ranking_pairs;
class_<sparse_ranking_pairs>("sparse_ranking_pairs")
.def(vector_indexing_suite<sparse_ranking_pairs>())
py::bind_vector<sparse_ranking_pairs>(m, "sparse_ranking_pairs")
.def("clear", &sparse_ranking_pairs::clear)
.def("resize", resize<sparse_ranking_pairs>)
.def_pickle(serialize_pickle<sparse_ranking_pairs>());
.def("extend", extend_vector_with_python_list<ranking_pair<sparse_vect>>)
.def(py::pickle(&getstate<sparse_ranking_pairs>, &setstate<sparse_ranking_pairs>));
add_ranker<svm_rank_trainer<linear_kernel<sample_type> > >("svm_rank_trainer");
add_ranker<svm_rank_trainer<sparse_linear_kernel<sparse_vect> > >("svm_rank_trainer_sparse");
add_ranker<svm_rank_trainer<linear_kernel<sample_type> > >(m, "svm_rank_trainer");
add_ranker<svm_rank_trainer<sparse_linear_kernel<sparse_vect> > >(m, "svm_rank_trainer_sparse");
def("cross_validate_ranking_trainer", &_cross_ranking_validate_trainer<
m.def("cross_validate_ranking_trainer", &_cross_ranking_validate_trainer<
svm_rank_trainer<linear_kernel<sample_type> >,sample_type>,
(arg("trainer"), arg("samples"), arg("folds")) );
def("cross_validate_ranking_trainer", &_cross_ranking_validate_trainer<
py::arg("trainer"), py::arg("samples"), py::arg("folds") );
m.def("cross_validate_ranking_trainer", &_cross_ranking_validate_trainer<
svm_rank_trainer<sparse_linear_kernel<sparse_vect> > ,sparse_vect>,
(arg("trainer"), arg("samples"), arg("folds")) );
py::arg("trainer"), py::arg("samples"), py::arg("folds") );
}

View File

@ -3,13 +3,11 @@
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <boost/python/args.hpp>
#include <dlib/svm.h>
using namespace dlib;
using namespace std;
using namespace boost::python;
namespace py = pybind11;
template <typename psi_type>
class svm_struct_prob : public structural_svm_problem<matrix<double,0,1>, psi_type>
@ -20,7 +18,7 @@ class svm_struct_prob : public structural_svm_problem<matrix<double,0,1>, psi_ty
typedef typename base::scalar_type scalar_type;
public:
svm_struct_prob (
object& problem_,
py::object& problem_,
long num_dimensions_,
long num_samples_
) :
@ -40,7 +38,7 @@ public:
feature_vector_type& psi
) const
{
psi = extract<feature_vector_type&>(problem.attr("get_truth_joint_feature_vector")(idx));
psi = problem.attr("get_truth_joint_feature_vector")(idx).template cast<feature_vector_type&>();
}
virtual void separation_oracle (
@ -50,51 +48,49 @@ public:
feature_vector_type& psi
) const
{
object res = problem.attr("separation_oracle")(idx,boost::ref(current_solution));
py::object res = problem.attr("separation_oracle")(idx,std::ref(current_solution));
pyassert(len(res) == 2, "separation_oracle() must return two objects, the loss and the psi vector");
py::tuple t = res.cast<py::tuple>();
// let the user supply the output arguments in any order.
if (extract<double>(res[0]).check())
{
loss = extract<double>(res[0]);
psi = extract<feature_vector_type&>(res[1]);
}
else
{
psi = extract<feature_vector_type&>(res[0]);
loss = extract<double>(res[1]);
}
try {
loss = t[0].cast<scalar_type>();
psi = t[1].cast<feature_vector_type&>();
} catch(py::cast_error &e) {
psi = t[0].cast<feature_vector_type&>();
loss = t[1].cast<scalar_type>();
}
}
private:
const long num_dimensions;
const long num_samples;
object& problem;
py::object& problem;
};
// ----------------------------------------------------------------------------------------
template <typename psi_type>
matrix<double,0,1> solve_structural_svm_problem_impl(
object problem
py::object problem
)
{
const double C = extract<double>(problem.attr("C"));
const bool be_verbose = hasattr(problem,"be_verbose") && extract<bool>(problem.attr("be_verbose"));
const bool use_sparse_feature_vectors = hasattr(problem,"use_sparse_feature_vectors") &&
extract<bool>(problem.attr("use_sparse_feature_vectors"));
const bool learns_nonnegative_weights = hasattr(problem,"learns_nonnegative_weights") &&
extract<bool>(problem.attr("learns_nonnegative_weights"));
const double C = problem.attr("C").cast<double>();
const bool be_verbose = py::hasattr(problem,"be_verbose") && problem.attr("be_verbose").cast<bool>();
const bool use_sparse_feature_vectors = py::hasattr(problem,"use_sparse_feature_vectors") &&
problem.attr("use_sparse_feature_vectors").cast<bool>();
const bool learns_nonnegative_weights = py::hasattr(problem,"learns_nonnegative_weights") &&
problem.attr("learns_nonnegative_weights").cast<bool>();
double eps = 0.001;
unsigned long max_cache_size = 10;
if (hasattr(problem, "epsilon"))
eps = extract<double>(problem.attr("epsilon"));
if (hasattr(problem, "max_cache_size"))
max_cache_size = extract<double>(problem.attr("max_cache_size"));
if (py::hasattr(problem, "epsilon"))
eps = problem.attr("epsilon").cast<double>();
if (py::hasattr(problem, "max_cache_size"))
max_cache_size = problem.attr("max_cache_size").cast<double>();
const long num_samples = extract<long>(problem.attr("num_samples"));
const long num_dimensions = extract<long>(problem.attr("num_dimensions"));
const long num_samples = problem.attr("num_samples").cast<long>();
const long num_dimensions = problem.attr("num_dimensions").cast<long>();
pyassert(num_samples > 0, "You can't train a Structural-SVM if you don't have any training samples.");
@ -129,12 +125,11 @@ matrix<double,0,1> solve_structural_svm_problem_impl(
// ----------------------------------------------------------------------------------------
matrix<double,0,1> solve_structural_svm_problem(
object problem
py::object problem
)
{
// Check if the python code is using sparse or dense vectors to represent PSI()
extract<matrix<double,0,1> > isdense(problem.attr("get_truth_joint_feature_vector")(0));
if (isdense.check())
if (py::isinstance<matrix<double,0,1>>(problem.attr("get_truth_joint_feature_vector")(0)))
return solve_structural_svm_problem_impl<matrix<double,0,1> >(problem);
else
return solve_structural_svm_problem_impl<std::vector<std::pair<unsigned long,double> > >(problem);
@ -142,11 +137,9 @@ matrix<double,0,1> solve_structural_svm_problem(
// ----------------------------------------------------------------------------------------
void bind_svm_struct()
void bind_svm_struct(py::module& m)
{
using boost::python::arg;
def("solve_structural_svm_problem",solve_structural_svm_problem, (arg("problem")),
m.def("solve_structural_svm_problem",solve_structural_svm_problem, py::arg("problem"),
"This function solves a structural SVM problem and returns the weight vector \n\
that defines the solution. See the example program python_examples/svm_struct.py \n\
for documentation about how to create a proper problem object. "

View File

@ -2,19 +2,18 @@
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/python.h>
#include <boost/shared_ptr.hpp>
#include <dlib/matrix.h>
#include <boost/python/slice.hpp>
#include <dlib/geometry/vector.h>
#include <pybind11/stl_bind.h>
#include "indexing.h"
using namespace dlib;
using namespace std;
using namespace boost::python;
typedef matrix<double,0,1> cv;
PYBIND11_MAKE_OPAQUE(std::vector<point>);
void cv_set_size(cv& m, long s)
{
m.set_size(s);
@ -52,23 +51,20 @@ string cv__repr__ (const cv& v)
return sout.str();
}
boost::shared_ptr<cv> cv_from_object(object obj)
std::shared_ptr<cv> cv_from_object(py::object obj)
{
extract<long> thesize(obj);
if (thesize.check())
{
long nr = thesize;
boost::shared_ptr<cv> temp(new cv(nr));
try {
long nr = obj.cast<long>();
auto temp = std::make_shared<cv>(nr);
*temp = 0;
return temp;
}
else
{
} catch(py::cast_error &e) {
py::list li = obj.cast<py::list>();
const long nr = len(obj);
boost::shared_ptr<cv> temp(new cv(nr));
auto temp = std::make_shared<cv>(nr);
for ( long r = 0; r < nr; ++r)
{
(*temp)(r) = extract<double>(obj[r]);
(*temp)(r) = li[r].cast<double>();
}
return temp;
}
@ -88,7 +84,7 @@ void cv__setitem__(cv& c, long p, double val)
if (p > c.size()-1) {
PyErr_SetString( PyExc_IndexError, "index out of range"
);
boost::python::throw_error_already_set();
throw py::error_already_set();
}
c(p) = val;
}
@ -101,38 +97,29 @@ double cv__getitem__(cv& m, long r)
if (r > m.size()-1 || r < 0) {
PyErr_SetString( PyExc_IndexError, "index out of range"
);
boost::python::throw_error_already_set();
throw py::error_already_set();
}
return m(r);
}
cv cv__getitem2__(cv& m, slice r)
cv cv__getitem2__(cv& m, py::slice r)
{
slice::range<cv::iterator> bounds;
bounds = r.get_indicies<>(m.begin(), m.end());
long num = (bounds.stop-bounds.start+1);
// round num up to the next multiple of bounds.step.
if ((num%bounds.step) != 0)
num += bounds.step - num%bounds.step;
size_t start, stop, step, slicelength;
if (!r.compute(m.size(), &start, &stop, &step, &slicelength))
throw py::error_already_set();
cv temp(num/bounds.step);
cv temp(slicelength);
if (temp.size() == 0)
return temp;
long ii = 0;
while(bounds.start != bounds.stop)
{
temp(ii++) = *bounds.start;
std::advance(bounds.start, bounds.step);
for (size_t i = 0; i < slicelength; ++i) {
temp(i) = m(start); start += step;
}
temp(ii) = *bounds.start;
return temp;
}
boost::python::tuple cv_get_matrix_size(cv& m)
py::tuple cv_get_matrix_size(cv& m)
{
return boost::python::make_tuple(m.nr(), m.nc());
return py::make_tuple(m.nr(), m.nc());
}
// ----------------------------------------------------------------------------------------
@ -155,41 +142,41 @@ long point_x(const point& p) { return p.x(); }
long point_y(const point& p) { return p.y(); }
// ----------------------------------------------------------------------------------------
void bind_vector()
void bind_vector(py::module& m)
{
using boost::python::arg;
{
class_<cv>("vector", "This object represents the mathematical idea of a column vector.", init<>())
py::class_<cv, std::shared_ptr<cv>>(m, "vector", "This object represents the mathematical idea of a column vector.")
.def(py::init())
.def("set_size", &cv_set_size)
.def("resize", &cv_set_size)
.def("__init__", make_constructor(&cv_from_object))
.def(py::init(&cv_from_object))
.def("__repr__", &cv__repr__)
.def("__str__", &cv__str__)
.def("__len__", &cv__len__)
.def("__getitem__", &cv__getitem__)
.def("__getitem__", &cv__getitem2__)
.def("__setitem__", &cv__setitem__)
.add_property("shape", &cv_get_matrix_size)
.def_pickle(serialize_pickle<cv>());
.def_property_readonly("shape", &cv_get_matrix_size)
.def(py::pickle(&getstate<cv>, &setstate<cv>));
def("dot", dotprod, "Compute the dot product between two dense column vectors.");
m.def("dot", &dotprod, "Compute the dot product between two dense column vectors.");
}
{
typedef point type;
class_<type>("point", "This object represents a single point of integer coordinates that maps directly to a dlib::point.")
.def(init<long,long>((arg("x"), arg("y"))))
py::class_<type>(m, "point", "This object represents a single point of integer coordinates that maps directly to a dlib::point.")
.def(py::init<long,long>(), py::arg("x"), py::arg("y"))
.def("__repr__", &point__repr__)
.def("__str__", &point__str__)
.add_property("x", &point_x, "The x-coordinate of the point.")
.add_property("y", &point_y, "The y-coordinate of the point.")
.def_pickle(serialize_pickle<type>());
.def_property_readonly("x", &point_x, "The x-coordinate of the point.")
.def_property_readonly("y", &point_y, "The y-coordinate of the point.")
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
typedef std::vector<point> type;
class_<type>("points", "An array of point objects.")
.def(vector_indexing_suite<type>())
py::bind_vector<type>(m, "points", "An array of point objects.")
.def("clear", &type::clear)
.def("resize", resize<type>)
.def_pickle(serialize_pickle<type>());
.def("extend", extend_vector_with_python_list<point>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
}

1
tools/python/test/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
__pycache__

View File

@ -0,0 +1,102 @@
from dlib import array
try:
import cPickle as pickle # Use cPickle on Python 2.7
except ImportError:
import pickle
from types import FloatType
from pytest import raises
def test_array_init_with_number():
a = array(5)
assert len(a) == 5
for i in range(5):
assert a[i] == 0
assert type(a[i]) == FloatType
def test_array_init_with_negative_number():
with raises(MemoryError):
array(-5)
def test_array_init_with_zero():
a = array(0)
assert len(a) == 0
def test_array_init_with_list():
a = array([0, 1, 2, 3, 4])
assert len(a) == 5
for idx, val in enumerate(a):
assert idx == val
assert type(val) == FloatType
def test_array_init_with_empty_list():
a = array([])
assert len(a) == 0
def test_array_init_without_argument():
a = array()
assert len(a) == 0
def test_array_init_with_tuple():
a = array((0, 1, 2, 3, 4))
for idx, val in enumerate(a):
assert idx == val
assert type(val) == FloatType
def test_array_serialization_empty():
a = array()
# cPickle with protocol 2 required for Python 2.7
# see http://pybind11.readthedocs.io/en/stable/advanced/classes.html#custom-constructors
ser = pickle.dumps(a, 2)
deser = pickle.loads(ser)
assert a == deser
def test_array_serialization():
a = array([0, 1, 2, 3, 4])
ser = pickle.dumps(a, 2)
deser = pickle.loads(ser)
assert a == deser
def test_array_extend():
a = array()
a.extend([0, 1, 2, 3, 4])
assert len(a) == 5
for idx, val in enumerate(a):
assert idx == val
assert type(val) == FloatType
def test_array_string_representations_empty():
a = array()
assert str(a) == ""
assert repr(a) == "array[]"
def test_array_string_representations():
a = array([1, 2, 3])
assert str(a) == "1\n2\n3"
assert repr(a) == "array[1, 2, 3]"
def test_array_clear():
a = array(10)
a.clear()
assert len(a) == 0
def test_array_resize():
a = array(10)
a.resize(100)
assert len(a) == 100
for i in range(100):
assert a[i] == 0

View File

@ -0,0 +1,94 @@
from dlib import matrix
try:
import cPickle as pickle # Use cPickle on Python 2.7
except ImportError:
import pickle
from pytest import raises
import numpy
def test_matrix_empty_init():
m = matrix()
assert m.nr() == 0
assert m.nc() == 0
assert m.shape == (0, 0)
assert len(m) == 0
assert repr(m) == "< dlib.matrix containing: >"
assert str(m) == ""
def test_matrix_from_list():
m = matrix([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
assert m.nr() == 3
assert m.nc() == 3
assert m.shape == (3, 3)
assert len(m) == 3
assert repr(m) == "< dlib.matrix containing: \n0 1 2 \n3 4 5 \n6 7 8 >"
assert str(m) == "0 1 2 \n3 4 5 \n6 7 8"
deser = pickle.loads(pickle.dumps(m, 2))
for row in range(3):
for col in range(3):
assert m[row][col] == deser[row][col]
def test_matrix_from_list_with_invalid_rows():
with raises(ValueError):
matrix([[0, 1, 2],
[3, 4],
[5, 6, 7]])
def test_matrix_from_list_as_column_vector():
m = matrix([0, 1, 2])
assert m.nr() == 3
assert m.nc() == 1
assert m.shape == (3, 1)
assert len(m) == 3
assert repr(m) == "< dlib.matrix containing: \n0 \n1 \n2 >"
assert str(m) == "0 \n1 \n2"
def test_matrix_from_object_with_2d_shape():
m1 = numpy.array([[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
m = matrix(m1)
assert m.nr() == 3
assert m.nc() == 3
assert m.shape == (3, 3)
assert len(m) == 3
assert repr(m) == "< dlib.matrix containing: \n0 1 2 \n3 4 5 \n6 7 8 >"
assert str(m) == "0 1 2 \n3 4 5 \n6 7 8"
def test_matrix_from_object_without_2d_shape():
with raises(IndexError):
m1 = numpy.array([0, 1, 2])
matrix(m1)
def test_matrix_from_object_without_shape():
with raises(AttributeError):
matrix("invalid")
def test_matrix_set_size():
m = matrix()
m.set_size(5, 5)
assert m.nr() == 5
assert m.nc() == 5
assert m.shape == (5, 5)
assert len(m) == 5
assert repr(m) == "< dlib.matrix containing: \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 >"
assert str(m) == "0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0 \n0 0 0 0 0"
deser = pickle.loads(pickle.dumps(m, 2))
for row in range(5):
for col in range(5):
assert m[row][col] == deser[row][col]

View File

@ -0,0 +1,48 @@
from dlib import point, points
try:
import cPickle as pickle # Use cPickle on Python 2.7
except ImportError:
import pickle
def test_point():
p = point(27, 42)
assert repr(p) == "point(27, 42)"
assert str(p) == "(27, 42)"
assert p.x == 27
assert p.y == 42
ser = pickle.dumps(p, 2)
deser = pickle.loads(ser)
assert deser.x == p.x
assert deser.y == p.y
def test_point_init_kwargs():
p = point(y=27, x=42)
assert repr(p) == "point(42, 27)"
assert str(p) == "(42, 27)"
assert p.x == 42
assert p.y == 27
def test_points():
ps = points()
ps.resize(5)
assert len(ps) == 5
for i in range(5):
assert ps[i].x == 0
assert ps[i].y == 0
ps.clear()
assert len(ps) == 0
ps.extend([point(1, 2), point(3, 4)])
assert len(ps) == 2
ser = pickle.dumps(ps, 2)
deser = pickle.loads(ser)
assert deser[0].x == 1
assert deser[0].y == 2
assert deser[1].x == 3
assert deser[1].y == 4

View File

@ -0,0 +1,97 @@
from dlib import range, ranges, rangess
try:
import cPickle as pickle # Use cPickle on Python 2.7
except ImportError:
import pickle
from pytest import raises
def test_range():
r = range(0, 10)
assert r.begin == 0
assert r.end == 10
assert str(r) == "0, 10"
assert repr(r) == "dlib.range(0, 10)"
assert len(r) == 10
ser = pickle.dumps(r, 2)
deser = pickle.loads(ser)
for a, b in zip(r, deser):
assert a == b
# TODO: make this init parameterization an exception?
def test_range_wrong_order():
r = range(5, 0)
assert r.begin == 5
assert r.end == 0
assert str(r) == "5, 0"
assert repr(r) == "dlib.range(5, 0)"
assert len(r) == 0
def test_range_with_negative_elements():
with raises(TypeError):
range(-1, 1)
with raises(TypeError):
range(1, -1)
def test_ranges():
rs = ranges()
assert len(rs) == 0
rs.resize(5)
assert len(rs) == 5
for r in rs:
assert r.begin == 0
assert r.end == 0
rs.clear()
assert len(rs) == 0
rs.extend([range(1, 2), range(3, 4)])
assert rs[0].begin == 1
assert rs[0].end == 2
assert rs[1].begin == 3
assert rs[1].end == 4
ser = pickle.dumps(rs, 2)
deser = pickle.loads(ser)
assert rs == deser
def test_rangess():
rss = rangess()
assert len(rss) == 0
rss.resize(5)
assert len(rss) == 5
for rs in rss:
assert len(rs) == 0
rss.clear()
assert len(rss) == 0
rs1 = ranges()
rs1.append(range(1, 2))
rs1.append(range(3, 4))
rs2 = ranges()
rs2.append(range(5, 6))
rs2.append(range(7, 8))
rss.extend([rs1, rs2])
assert rss[0][0].begin == 1
assert rss[0][1].begin == 3
assert rss[1][0].begin == 5
assert rss[1][1].begin == 7
assert rss[0][0].end == 2
assert rss[0][1].end == 4
assert rss[1][0].end == 6
assert rss[1][1].end == 8
ser = pickle.dumps(rss, 2)
deser = pickle.loads(ser)
assert rss == deser

View File

@ -0,0 +1,26 @@
from dlib import rgb_pixel
def test_rgb_pixel():
p = rgb_pixel(0, 50, 100)
assert p.red == 0
assert p.green == 50
assert p.blue == 100
assert str(p) == "red: 0, green: 50, blue: 100"
assert repr(p) == "rgb_pixel(0,50,100)"
p = rgb_pixel(blue=0, red=50, green=100)
assert p.red == 50
assert p.green == 100
assert p.blue == 0
assert str(p) == "red: 50, green: 100, blue: 0"
assert repr(p) == "rgb_pixel(50,100,0)"
p.red = 100
p.green = 0
p.blue = 50
assert p.red == 100
assert p.green == 0
assert p.blue == 50
assert str(p) == "red: 100, green: 0, blue: 50"
assert repr(p) == "rgb_pixel(100,0,50)"

View File

@ -0,0 +1,101 @@
from dlib import pair, make_sparse_vector, sparse_vector, sparse_vectors, sparse_vectorss
try:
import cPickle as pickle # Use cPickle on Python 2.7
except ImportError:
import pickle
from pytest import approx
def test_pair():
p = pair(4, .9)
assert p.first == 4
assert p.second == .9
p.first = 3
p.second = .4
assert p.first == 3
assert p.second == .4
assert str(p) == "3: 0.4"
assert repr(p) == "dlib.pair(3, 0.4)"
deser = pickle.loads(pickle.dumps(p, 2))
assert deser.first == p.first
assert deser.second == p.second
def test_sparse_vector():
sv = sparse_vector()
sv.append(pair(3, .1))
sv.append(pair(3, .2))
sv.append(pair(2, .3))
sv.append(pair(1, .4))
assert len(sv) == 4
make_sparse_vector(sv)
assert len(sv) == 3
assert sv[0].first == 1
assert sv[0].second == .4
assert sv[1].first == 2
assert sv[1].second == .3
assert sv[2].first == 3
assert sv[2].second == approx(.3)
assert str(sv) == "1: 0.4\n2: 0.3\n3: 0.3"
assert repr(sv) == "< dlib.sparse_vector containing: \n1: 0.4\n2: 0.3\n3: 0.3 >"
def test_sparse_vectors():
svs = sparse_vectors()
assert len(svs) == 0
svs.resize(5)
for sv in svs:
assert len(sv) == 0
svs.clear()
assert len(svs) == 0
svs.extend([sparse_vector([pair(1, 2), pair(3, 4)]), sparse_vector([pair(5, 6), pair(7, 8)])])
assert len(svs) == 2
assert svs[0][0].first == 1
assert svs[0][0].second == 2
assert svs[0][1].first == 3
assert svs[0][1].second == 4
assert svs[1][0].first == 5
assert svs[1][0].second == 6
assert svs[1][1].first == 7
assert svs[1][1].second == 8
deser = pickle.loads(pickle.dumps(svs, 2))
assert deser == svs
def test_sparse_vectorss():
svss = sparse_vectorss()
assert len(svss) == 0
svss.resize(5)
for svs in svss:
assert len(svs) == 0
svss.clear()
assert len(svss) == 0
svss.extend([sparse_vectors([sparse_vector([pair(1, 2), pair(3, 4)]), sparse_vector([pair(5, 6), pair(7, 8)])])])
assert len(svss) == 1
assert svss[0][0][0].first == 1
assert svss[0][0][0].second == 2
assert svss[0][0][1].first == 3
assert svss[0][0][1].second == 4
assert svss[0][1][0].first == 5
assert svss[0][1][0].second == 6
assert svss[0][1][1].first == 7
assert svss[0][1][1].second == 8
deser = pickle.loads(pickle.dumps(svss, 2))
assert deser == svss

View File

@ -0,0 +1,170 @@
from dlib import vector, vectors, vectorss, dot
try:
import cPickle as pickle # Use cPickle on Python 2.7
except ImportError:
import pickle
from pytest import raises
def test_vector_empty_init():
v = vector()
assert len(v) == 0
assert v.shape == (0, 1)
assert str(v) == ""
assert repr(v) == "dlib.vector([])"
def test_vector_init_with_number():
v = vector(3)
assert len(v) == 3
assert v.shape == (3, 1)
assert str(v) == "0\n0\n0"
assert repr(v) == "dlib.vector([0, 0, 0])"
def test_vector_set_size():
v = vector(3)
v.set_size(0)
assert len(v) == 0
assert v.shape == (0, 1)
v.resize(10)
assert len(v) == 10
assert v.shape == (10, 1)
for i in range(10):
assert v[i] == 0
def test_vector_init_with_list():
v = vector([1, 2, 3])
assert len(v) == 3
assert v.shape == (3, 1)
assert str(v) == "1\n2\n3"
assert repr(v) == "dlib.vector([1, 2, 3])"
def test_vector_getitem():
v = vector([1, 2, 3])
assert v[0] == 1
assert v[-1] == 3
assert v[1] == v[-2]
def test_vector_slice():
v = vector([1, 2, 3, 4, 5])
v_slice = v[1:4]
assert len(v_slice) == 3
for idx, val in enumerate([2, 3, 4]):
assert v_slice[idx] == val
v_slice = v[-3:-1]
assert len(v_slice) == 2
for idx, val in enumerate([3, 4]):
assert v_slice[idx] == val
v_slice = v[1:-2]
assert len(v_slice) == 2
for idx, val in enumerate([2, 3]):
assert v_slice[idx] == val
def test_vector_invalid_getitem():
v = vector([1, 2, 3])
with raises(IndexError):
v[-4]
with raises(IndexError):
v[3]
def test_vector_init_with_negative_number():
with raises(MemoryError):
vector(-3)
def test_dot():
v1 = vector([1, 0])
v2 = vector([0, 1])
v3 = vector([-1, 0])
assert dot(v1, v1) == 1
assert dot(v1, v2) == 0
assert dot(v1, v3) == -1
def test_vector_serialization():
v = vector([1, 2, 3])
ser = pickle.dumps(v, 2)
deser = pickle.loads(ser)
assert str(v) == str(deser)
def generate_test_vectors():
vs = vectors()
vs.append(vector([0, 1, 2]))
vs.append(vector([3, 4, 5]))
vs.append(vector([6, 7, 8]))
assert len(vs) == 3
return vs
def generate_test_vectorss():
vss = vectorss()
vss.append(generate_test_vectors())
vss.append(generate_test_vectors())
vss.append(generate_test_vectors())
assert len(vss) == 3
return vss
def test_vectors_serialization():
vs = generate_test_vectors()
ser = pickle.dumps(vs, 2)
deser = pickle.loads(ser)
assert vs == deser
def test_vectors_clear():
vs = generate_test_vectors()
vs.clear()
assert len(vs) == 0
def test_vectors_resize():
vs = vectors()
vs.resize(100)
assert len(vs) == 100
for i in range(100):
assert len(vs[i]) == 0
def test_vectors_extend():
vs = vectors()
vs.extend([vector([1, 2, 3]), vector([4, 5, 6])])
assert len(vs) == 2
def test_vectorss_serialization():
vss = generate_test_vectorss()
ser = pickle.dumps(vss, 2)
deser = pickle.loads(ser)
assert vss == deser
def test_vectorss_clear():
vss = generate_test_vectorss()
vss.clear()
assert len(vss) == 0
def test_vectorss_resize():
vss = vectorss()
vss.resize(100)
assert len(vss) == 100
for i in range(100):
assert len(vss[i]) == 0
def test_vectorss_extend():
vss = vectorss()
vss.extend([generate_test_vectors(), generate_test_vectors()])
assert len(vss) == 2