Changed code to avoid unnecessary cutting plane copying. This makes the

optimizer noticeably faster in some cases.
This commit is contained in:
Davis King 2013-01-26 01:51:28 -05:00
parent c9bd5309ef
commit 0487e37ed6

View File

@ -8,6 +8,7 @@
#include "../matrix.h"
#include "optimization_solve_qp_using_smo.h"
#include <vector>
#include "../sequence.h"
// ----------------------------------------------------------------------------------------
@ -138,7 +139,7 @@ namespace dlib
const scalar_type C = problem.get_c();
matrix<scalar_type,0,0,mem_manager_type, layout_type> planes;
typename sequence<vect_type>::kernel_2a planes;
std::vector<scalar_type> bs, miss_count;
vect_type new_plane, alpha;
@ -162,7 +163,8 @@ namespace dlib
// The flat lower bounding plane is always good to have if we know
// what it is.
bs.push_back(R_lower_bound);
planes = zeros_matrix(w);
new_plane = zeros_matrix(w);
planes.add(0, new_plane);
alpha = uniform_matrix<scalar_type>(1,1, C);
miss_count.push_back(0);
@ -194,11 +196,8 @@ namespace dlib
set_rowm(new_plane, range(force_weight_to_1, new_plane.size()-1)) = 0;
}
if (planes.size() != 0)
planes = join_rows(planes, new_plane);
else
planes = new_plane;
bs.push_back(cur_risk - dot(w,new_plane));
planes.add(planes.size(), new_plane);
miss_count.push_back(0);
// If alpha is empty then initialize it (we must always have sum(alpha) == C).
@ -214,21 +213,21 @@ namespace dlib
// report current status
const scalar_type risk_gap = cur_risk - (cp_obj-wnorm)/C;
if (counter > 0 && problem.optimization_status(cur_obj, cur_obj - cp_obj,
cur_risk, risk_gap, planes.nc(), counter))
cur_risk, risk_gap, planes.size(), counter))
{
break;
}
// compute kernel matrix for all the planes
K.swap(Ktmp);
K.set_size(planes.nc(), planes.nc());
K.set_size(planes.size(), planes.size());
// copy over the old K matrix
set_subm(K, 0,0, Ktmp.nr(), Ktmp.nc()) = Ktmp;
// now add the new row and column to K
for (long c = 0; c < planes.nc(); ++c)
for (unsigned long c = 0; c < planes.size(); ++c)
{
K(c, Ktmp.nc()) = dot(colm(planes,c), new_plane);
K(c, Ktmp.nc()) = dot(planes[c], planes[planes.size()-1]);
K(Ktmp.nc(), c) = K(c,Ktmp.nc());
}
@ -242,12 +241,23 @@ namespace dlib
// Note that we warm start this optimization by using the alpha from the last
// iteration as the starting point.
if (num_nonnegative != 0)
solve_qp4_using_smo(rowm(planes,range(0,num_nonnegative-1)), K, mat(bs), alpha, eps, sub_max_iter);
{
// copy planes into a matrix so we can call solve_qp4_using_smo()
matrix<scalar_type,0,0,mem_manager_type, layout_type> planes_mat(num_nonnegative,planes.size());
for (unsigned long i = 0; i < planes.size(); ++i)
set_rowm(planes_mat,i) = rowm(planes[i],0,num_nonnegative);
solve_qp4_using_smo(planes_mat, K, mat(bs), alpha, eps, sub_max_iter);
}
else
{
solve_qp_using_smo(K, mat(bs), alpha, eps, sub_max_iter);
}
// construct the w that minimized the subproblem.
w = -(planes*alpha);
w = -alpha(0)*planes[0];
for (unsigned long i = 1; i < planes.size(); ++i)
w -= alpha(i)*planes[i];
// threshold the first num_nonnegative w elements if necessary.
if (num_nonnegative != 0)
set_rowm(w,range(0,num_nonnegative-1)) = lowerbound(rowm(w,range(0,num_nonnegative-1)),0);
@ -274,7 +284,7 @@ namespace dlib
miss_count.erase(miss_count.begin()+idx);
K = removerc(K, idx, idx);
alpha = remove_row(alpha,idx);
planes = remove_col(planes,idx);
planes.remove(idx, new_plane);
}
++counter;