You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
dlib/examples/dnn_semantic_segmentation_t...

391 lines
13 KiB

Add semantic segmentation example (#943) * Add example of semantic segmentation using the PASCAL VOC2012 dataset * Add note about Debug Information Format when using MSVC * Make the upsampling layers residual as well * Fix declaration order * Use a wider net * trainer.set_iterations_without_progress_threshold(5000); // (was 20000) * Add residual_up * Process entire directories of images (just easier to use) * Simplify network structure so that builds finish even on Visual Studio (faster, or at all) * Remove the training example from CMakeLists, because it's too much for the 32-bit MSVC++ compiler to handle * Remove the probably-now-unnecessary set_dnn_prefer_smallest_algorithms call * Review fix: remove the batch normalization layer from right before the loss * Review fix: point out that only the Visual C++ compiler has problems. Also expand the instructions how to run MSBuild.exe to circumvent the problems. * Review fix: use dlib::match_endings * Review fix: use dlib::join_rows. Also add some comments, and instructions where to download the pre-trained net from. * Review fix: make formatting comply with dlib style conventions. * Review fix: output training parameters. * Review fix: remove #ifndef __INTELLISENSE__ * Review fix: use std::string instead of char* * Review fix: update interpolation_abstract.h to say that extract_image_chips can now take the interpolation method as a parameter * Fix whitespace formatting * Add more comments * Fix finding image files for inference * Resize inference test output to the size of the input; add clarifying remarks * Resize net output even in calculate_accuracy * After all crop the net output instead of resizing it by interpolation * For clarity, add an empty line in the console output
7 years ago
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This example shows how to train a semantic segmentation net using the PASCAL VOC2012
dataset. For an introduction to what segmentation is, see the accompanying header file
dnn_semantic_segmentation_ex.h.
Instructions how to run the example:
1. Download the PASCAL VOC2012 data, and untar it somewhere.
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
2. Build the dnn_semantic_segmentation_train_ex example program.
3. Run:
./dnn_semantic_segmentation_train_ex /path/to/VOC2012
4. Wait while the network is being trained.
5. Build the dnn_semantic_segmentation_ex example program.
6. Run:
./dnn_semantic_segmentation_ex /path/to/VOC2012-or-other-images
It would be a good idea to become familiar with dlib's DNN tooling before reading this
example. So you should read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp
before reading this example program.
*/
#include "dnn_semantic_segmentation_ex.h"
#include <iostream>
#include <dlib/data_io.h>
#include <dlib/image_transforms.h>
#include <dlib/dir_nav.h>
#include <iterator>
#include <thread>
using namespace std;
using namespace dlib;
// A single training sample. A mini-batch comprises many of these.
struct training_sample
{
matrix<rgb_pixel> input_image;
matrix<uint16_t> label_image; // The ground-truth label of each pixel.
};
// ----------------------------------------------------------------------------------------
rectangle make_random_cropping_rect_resnet(
const matrix<rgb_pixel>& img,
dlib::rand& rnd
)
{
// figure out what rectangle we want to crop from the image
double mins = 0.466666666, maxs = 0.875;
auto scale = mins + rnd.get_random_double()*(maxs-mins);
auto size = scale*std::min(img.nr(), img.nc());
rectangle rect(size, size);
// randomly shift the box around
point offset(rnd.get_random_32bit_number()%(img.nc()-rect.width()),
rnd.get_random_32bit_number()%(img.nr()-rect.height()));
return move_rect(rect, offset);
}
// ----------------------------------------------------------------------------------------
void randomly_crop_image (
const matrix<rgb_pixel>& input_image,
const matrix<uint16_t>& label_image,
training_sample& crop,
dlib::rand& rnd
)
{
const auto rect = make_random_cropping_rect_resnet(input_image, rnd);
const chip_details chip_details(rect, chip_dims(227, 227));
// Crop the input image.
extract_image_chip(input_image, chip_details, crop.input_image, interpolate_bilinear());
// Crop the labels correspondingly. However, note that here bilinear
// interpolation would make absolutely no sense - you wouldn't say that
// a bicycle is half-way between an aeroplane and a bird, would you?
extract_image_chip(label_image, chip_details, crop.label_image, interpolate_nearest_neighbor());
// Also randomly flip the input image and the labels.
if (rnd.get_random_double() > 0.5)
{
crop.input_image = fliplr(crop.input_image);
crop.label_image = fliplr(crop.label_image);
}
// And then randomly adjust the colors.
apply_random_color_offset(crop.input_image, rnd);
}
// ----------------------------------------------------------------------------------------
// The names of the input image and the associated RGB label image in the PASCAL VOC 2012
// data set.
struct image_info
{
string image_filename;
string label_filename;
};
// Read the list of image files belonging to either the "train", "trainval", or "val" set
// of the PASCAL VOC2012 data.
std::vector<image_info> get_pascal_voc2012_listing(
const std::string& voc2012_folder,
const std::string& file = "train" // "train", "trainval", or "val"
)
{
std::ifstream in(voc2012_folder + "/ImageSets/Segmentation/" + file + ".txt");
std::vector<image_info> results;
while (in)
{
std::string basename;
in >> basename;
if (!basename.empty())
{
image_info image_info;
image_info.image_filename = voc2012_folder + "/JPEGImages/" + basename + ".jpg";
image_info.label_filename = voc2012_folder + "/SegmentationClass/" + basename + ".png";
results.push_back(image_info);
}
}
return results;
}
// Read the list of image files belong to the "train" set of the PASCAL VOC2012 data.
std::vector<image_info> get_pascal_voc2012_train_listing(
const std::string& voc2012_folder
)
{
return get_pascal_voc2012_listing(voc2012_folder, "train");
}
// Read the list of image files belong to the "val" set of the PASCAL VOC2012 data.
std::vector<image_info> get_pascal_voc2012_val_listing(
const std::string& voc2012_folder
)
{
return get_pascal_voc2012_listing(voc2012_folder, "val");
}
// ----------------------------------------------------------------------------------------
// The PASCAL VOC2012 dataset contains 20 ground-truth classes + background. Each class
// is represented using an RGB color value. We associate each class also to an index in the
// range [0, 20], used internally by the network. To convert the ground-truth data to
// something that the network can efficiently digest, we need to be able to map the RGB
// values to the corresponding indexes.
// Given an RGB representation, find the corresponding PASCAL VOC2012 class
// (e.g., 'dog').
const Voc2012class& find_voc2012_class(const dlib::rgb_pixel& rgb_label)
{
return find_voc2012_class(
[&rgb_label](const Voc2012class& voc2012class)
{
return rgb_label == voc2012class.rgb_label;
}
);
}
// Convert an RGB class label to an index in the range [0, 20].
inline uint16_t rgb_label_to_index_label(const dlib::rgb_pixel& rgb_label)
{
return find_voc2012_class(rgb_label).index;
}
// Convert an image containing RGB class labels to a corresponding
// image containing indexes in the range [0, 20].
void rgb_label_image_to_index_label_image(
const dlib::matrix<dlib::rgb_pixel>& rgb_label_image,
dlib::matrix<uint16_t>& index_label_image
)
{
const long nr = rgb_label_image.nr();
const long nc = rgb_label_image.nc();
index_label_image.set_size(nr, nc);
for (long r = 0; r < nr; ++r)
{
for (long c = 0; c < nc; ++c)
{
index_label_image(r, c) = rgb_label_to_index_label(rgb_label_image(r, c));
}
}
}
// ----------------------------------------------------------------------------------------
// Calculate the per-pixel accuracy on a dataset whose file names are supplied as a parameter.
double calculate_accuracy(anet_type& anet, const std::vector<image_info>& dataset)
{
int num_right = 0;
int num_wrong = 0;
matrix<rgb_pixel> input_image;
matrix<rgb_pixel> rgb_label_image;
matrix<uint16_t> index_label_image;
matrix<uint16_t> net_output;
for (const auto& image_info : dataset)
{
// Load the input image.
load_image(input_image, image_info.image_filename);
// Load the ground-truth (RGB) labels.
load_image(rgb_label_image, image_info.label_filename);
// Create predictions for each pixel. At this point, the type of each prediction
// is an index (a value between 0 and 20). Note that the net may return an image
// that is not exactly the same size as the input.
const matrix<uint16_t> temp = anet(input_image);
// Convert the indexes to RGB values.
rgb_label_image_to_index_label_image(rgb_label_image, index_label_image);
// Crop the net output to be exactly the same size as the input.
const chip_details chip_details(
centered_rect(temp.nc() / 2, temp.nr() / 2, input_image.nc(), input_image.nr()),
chip_dims(input_image.nr(), input_image.nc())
);
extract_image_chip(temp, chip_details, net_output, interpolate_nearest_neighbor());
const long nr = index_label_image.nr();
const long nc = index_label_image.nc();
// Compare the predicted values to the ground-truth values.
for (long r = 0; r < nr; ++r)
{
for (long c = 0; c < nc; ++c)
{
const uint16_t truth = index_label_image(r, c);
if (truth != dlib::loss_multiclass_log_per_pixel_::label_to_ignore)
{
const uint16_t prediction = net_output(r, c);
if (prediction == truth)
{
++num_right;
}
else
{
++num_wrong;
}
}
}
}
}
// Return the accuracy estimate.
return num_right / static_cast<double>(num_right + num_wrong);
}
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv) try
{
if (argc != 2)
{
cout << "To run this program you need a copy of the PASCAL VOC2012 dataset." << endl;
cout << endl;
cout << "You call this program like this: " << endl;
cout << "./dnn_semantic_segmentation_train_ex /path/to/VOC2012" << endl;
return 1;
}
cout << "\nSCANNING PASCAL VOC2012 DATASET\n" << endl;
const auto listing = get_pascal_voc2012_train_listing(argv[1]);
cout << "images in dataset: " << listing.size() << endl;
if (listing.size() == 0)
{
cout << "Didn't find the VOC2012 dataset. " << endl;
return 1;
}
const double initial_learning_rate = 0.1;
const double weight_decay = 0.0001;
const double momentum = 0.9;
net_type net;
dnn_trainer<net_type> trainer(net,sgd(weight_decay, momentum));
trainer.be_verbose();
trainer.set_learning_rate(initial_learning_rate);
trainer.set_synchronization_file("pascal_voc2012_trainer_state_file.dat", std::chrono::minutes(10));
// This threshold is probably excessively large.
trainer.set_iterations_without_progress_threshold(5000);
// Since the progress threshold is so large might as well set the batch normalization
// stats window to something big too.
set_all_bn_running_stats_window_sizes(net, 1000);
// Output training parameters.
cout << endl << trainer << endl;
std::vector<matrix<rgb_pixel>> samples;
std::vector<matrix<uint16_t>> labels;
// Start a bunch of threads that read images from disk and pull out random crops. It's
// important to be sure to feed the GPU fast enough to keep it busy. Using multiple
// thread for this kind of data preparation helps us do that. Each thread puts the
// crops into the data queue.
dlib::pipe<training_sample> data(200);
auto f = [&data, &listing](time_t seed)
{
dlib::rand rnd(time(0)+seed);
matrix<rgb_pixel> input_image;
matrix<rgb_pixel> rgb_label_image;
matrix<uint16_t> index_label_image;
training_sample temp;
while(data.is_enabled())
{
// Pick a random input image.
const image_info& image_info = listing[rnd.get_random_32bit_number()%listing.size()];
// Load the input image.
load_image(input_image, image_info.image_filename);
// Load the ground-truth (RGB) labels.
load_image(rgb_label_image, image_info.label_filename);
// Convert the indexes to RGB values.
rgb_label_image_to_index_label_image(rgb_label_image, index_label_image);
// Randomly pick a part of the image.
randomly_crop_image(input_image, index_label_image, temp, rnd);
// Push the result to be used by the trainer.
data.enqueue(temp);
}
};
std::thread data_loader1([f](){ f(1); });
std::thread data_loader2([f](){ f(2); });
std::thread data_loader3([f](){ f(3); });
std::thread data_loader4([f](){ f(4); });
// The main training loop. Keep making mini-batches and giving them to the trainer.
// We will run until the learning rate has dropped by a factor of 1e-4.
while(trainer.get_learning_rate() >= 1e-4)
{
samples.clear();
labels.clear();
// make a 30-image mini-batch
training_sample temp;
while(samples.size() < 30)
{
data.dequeue(temp);
samples.push_back(std::move(temp.input_image));
labels.push_back(std::move(temp.label_image));
}
trainer.train_one_step(samples, labels);
}
// Training done, tell threads to stop and make sure to wait for them to finish before
// moving on.
data.disable();
data_loader1.join();
data_loader2.join();
data_loader3.join();
data_loader4.join();
// also wait for threaded processing to stop in the trainer.
trainer.get_net();
net.clean();
cout << "saving network" << endl;
serialize("semantic_segmentation_voc2012net.dnn") << net;
Add semantic segmentation example (#943) * Add example of semantic segmentation using the PASCAL VOC2012 dataset * Add note about Debug Information Format when using MSVC * Make the upsampling layers residual as well * Fix declaration order * Use a wider net * trainer.set_iterations_without_progress_threshold(5000); // (was 20000) * Add residual_up * Process entire directories of images (just easier to use) * Simplify network structure so that builds finish even on Visual Studio (faster, or at all) * Remove the training example from CMakeLists, because it's too much for the 32-bit MSVC++ compiler to handle * Remove the probably-now-unnecessary set_dnn_prefer_smallest_algorithms call * Review fix: remove the batch normalization layer from right before the loss * Review fix: point out that only the Visual C++ compiler has problems. Also expand the instructions how to run MSBuild.exe to circumvent the problems. * Review fix: use dlib::match_endings * Review fix: use dlib::join_rows. Also add some comments, and instructions where to download the pre-trained net from. * Review fix: make formatting comply with dlib style conventions. * Review fix: output training parameters. * Review fix: remove #ifndef __INTELLISENSE__ * Review fix: use std::string instead of char* * Review fix: update interpolation_abstract.h to say that extract_image_chips can now take the interpolation method as a parameter * Fix whitespace formatting * Add more comments * Fix finding image files for inference * Resize inference test output to the size of the input; add clarifying remarks * Resize net output even in calculate_accuracy * After all crop the net output instead of resizing it by interpolation * For clarity, add an empty line in the console output
7 years ago
// Make a copy of the network to use it for inference.
anet_type anet = net;
cout << "Testing the network..." << endl;
// Find the accuracy of the newly trained network on both the training and the validation sets.
cout << "train accuracy : " << calculate_accuracy(anet, get_pascal_voc2012_train_listing(argv[1])) << endl;
cout << "val accuracy : " << calculate_accuracy(anet, get_pascal_voc2012_val_listing(argv[1])) << endl;
}
catch(std::exception& e)
{
cout << e.what() << endl;
}