2023-01-30 09:17:34 +08:00
|
|
|
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
|
|
|
/*
|
|
|
|
|
|
|
|
This example program shows how to find frontal human faces in an image and
|
|
|
|
estimate their pose. The pose takes the form of 68 landmarks. These are
|
|
|
|
points on the face such as the corners of the mouth, along the eyebrows, on
|
|
|
|
the eyes, and so forth.
|
|
|
|
|
|
|
|
|
|
|
|
This example is essentially just a version of the face_landmark_detection_ex.cpp
|
|
|
|
example modified to use dlib's demuxer object to read from a camera instead
|
|
|
|
of files.
|
|
|
|
|
|
|
|
|
|
|
|
Finally, note that the face detector is fastest when compiled with at least
|
|
|
|
SSE2 instructions enabled. So if you are using a PC with an Intel or AMD
|
|
|
|
chip then you should enable at least SSE2 instructions. If you are using
|
|
|
|
cmake to compile this program you can enable them by using one of the
|
|
|
|
following commands when you create the build project:
|
|
|
|
cmake path_to_dlib_root/examples -DUSE_SSE2_INSTRUCTIONS=ON
|
|
|
|
cmake path_to_dlib_root/examples -DUSE_SSE4_INSTRUCTIONS=ON
|
|
|
|
cmake path_to_dlib_root/examples -DUSE_AVX_INSTRUCTIONS=ON
|
|
|
|
This will set the appropriate compiler options for GCC, clang, Visual
|
|
|
|
Studio, or the Intel compiler. If you are using another compiler then you
|
|
|
|
need to consult your compiler's manual to determine how to enable these
|
|
|
|
instructions. Note that AVX is the fastest but requires a CPU from at least
|
|
|
|
2011. SSE4 is the next fastest and is supported by most current machines.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <dlib/image_processing/frontal_face_detector.h>
|
|
|
|
#include <dlib/image_processing/render_face_detections.h>
|
|
|
|
#include <dlib/image_processing.h>
|
|
|
|
#include <dlib/cmd_line_parser.h>
|
|
|
|
#include <dlib/gui_widgets.h>
|
|
|
|
#include <dlib/media.h>
|
|
|
|
|
|
|
|
using namespace std;
|
2023-05-16 09:24:47 +08:00
|
|
|
using namespace dlib;
|
|
|
|
using namespace dlib::ffmpeg;
|
2023-01-30 09:17:34 +08:00
|
|
|
|
|
|
|
int main(int argc, const char** argv)
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
command_line_parser parser;
|
|
|
|
parser.add_option("height", "height of frames", 1);
|
|
|
|
parser.add_option("width", "width of frames", 1);
|
|
|
|
parser.add_option("framerate", "webcam desired framerate", 1);
|
|
|
|
parser.set_group_name("Help Options");
|
|
|
|
parser.add_option("h", "alias of --help");
|
|
|
|
parser.add_option("help", "display this message and exit");
|
|
|
|
|
|
|
|
parser.parse(argc, argv);
|
|
|
|
const char* one_time_opts[] = {"height", "width", "framerate"};
|
|
|
|
parser.check_one_time_options(one_time_opts);
|
|
|
|
|
|
|
|
if (parser.option("h") || parser.option("help"))
|
|
|
|
{
|
|
|
|
parser.print_options();
|
|
|
|
cout << "Please use `v4l2-ctl --list-formats-ext` to view all supported hardware formats\n";
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-05-16 09:24:47 +08:00
|
|
|
demuxer cap{[&]
|
2023-01-30 09:17:34 +08:00
|
|
|
{
|
|
|
|
ffmpeg::demuxer::args args;
|
2023-05-16 09:24:47 +08:00
|
|
|
args.filepath = "/dev/video0";
|
|
|
|
args.height = get_option(parser, "height", 0);
|
|
|
|
args.width = get_option(parser, "width", 0);
|
|
|
|
args.framerate = get_option(parser, "framerate", 0);
|
2023-01-30 09:17:34 +08:00
|
|
|
return args;
|
|
|
|
}()};
|
|
|
|
|
|
|
|
if (!cap.is_open())
|
|
|
|
{
|
|
|
|
cerr << "Unable to connect to camera" << endl;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
cout << "height : " << cap.height() << '\n';
|
|
|
|
cout << "width : " << cap.width() << '\n';
|
|
|
|
cout << "fps : " << cap.fps() << '\n';
|
|
|
|
|
|
|
|
image_window win;
|
|
|
|
|
|
|
|
// Load face detection and pose estimation models.
|
|
|
|
frontal_face_detector detector = get_frontal_face_detector();
|
|
|
|
shape_predictor pose_model;
|
|
|
|
deserialize("shape_predictor_68_face_landmarks.dat") >> pose_model;
|
|
|
|
|
|
|
|
array2d<rgb_pixel> img;
|
|
|
|
|
|
|
|
// Grab and process frames until the main window is closed by the user.
|
2023-09-20 19:07:36 +08:00
|
|
|
while(cap.read(img) && !win.is_closed())
|
2023-01-30 09:17:34 +08:00
|
|
|
{
|
|
|
|
// Detect faces
|
|
|
|
std::vector<rectangle> faces = detector(img);
|
|
|
|
// Find the pose of each face.
|
|
|
|
std::vector<full_object_detection> shapes;
|
|
|
|
for (unsigned long i = 0; i < faces.size(); ++i)
|
|
|
|
shapes.push_back(pose_model(img, faces[i]));
|
|
|
|
|
|
|
|
// Display it all on the screen
|
|
|
|
win.clear_overlay();
|
|
|
|
win.set_image(img);
|
|
|
|
win.add_overlay(render_face_detections(shapes));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
catch(serialization_error& e)
|
|
|
|
{
|
|
|
|
cout << "You need dlib's default face landmarking model file to run this example." << endl;
|
|
|
|
cout << "You can get it from the following URL: " << endl;
|
|
|
|
cout << " http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" << endl;
|
|
|
|
cout << endl << e.what() << endl;
|
|
|
|
}
|
|
|
|
catch(exception& e)
|
|
|
|
{
|
|
|
|
cout << e.what() << endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|