dlib/examples/dnn_yolo_train_ex.cpp

537 lines
25 KiB
C++
Raw Normal View History

2021-07-30 08:05:54 +08:00
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use of the deep learning tools from the dlib C++
Library. I'm assuming you have already read the dnn_introduction_ex.cpp, the
dnn_introduction2_ex.cpp and the dnn_introduction3_ex.cpp examples. In this example
program we are going to show how one can train a YOLO detector. In particular, we will train
the YOLOv3 model like the one introduced in this paper:
"YOLOv3: An Incremental Improvement" by Joseph Redmon and Ali Farhadi.
This example program will work with any imglab dataset, such as:
- faces: http://dlib.net/files/data/dlib_face_detection_dataset-2016-09-30.tar.gz
- vehicles: http://dlib.net/files/data/dlib_rear_end_vehicles_v1.tar
Just uncompress the dataset and give the directory containing the training.xml and testing.xml
files as an argument to this program.
*/
#include <dlib/cmd_line_parser.h>
#include <dlib/data_io.h>
#include <dlib/dnn.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include <tools/imglab/src/metadata_editor.h>
using namespace std;
using namespace dlib;
// In the darknet namespace we define:
// - the network architecture: DarkNet53 backbone and detection head for YOLO.
// - a helper function to setup the detector: change the number of classes, etc.
namespace darknet
{
// backbone tags
template <typename SUBNET> using btag8 = add_tag_layer<8008, SUBNET>;
template <typename SUBNET> using btag16 = add_tag_layer<8016, SUBNET>;
template <typename SUBNET> using bskip8 = add_skip_layer<btag8, SUBNET>;
template <typename SUBNET> using bskip16 = add_skip_layer<btag16, SUBNET>;
// neck tags
template <typename SUBNET> using ntag8 = add_tag_layer<6008, SUBNET>;
template <typename SUBNET> using ntag16 = add_tag_layer<6016, SUBNET>;
template <typename SUBNET> using ntag32 = add_tag_layer<6032, SUBNET>;
template <typename SUBNET> using nskip8 = add_skip_layer<ntag8, SUBNET>;
template <typename SUBNET> using nskip16 = add_skip_layer<ntag16, SUBNET>;
template <typename SUBNET> using nskip32 = add_skip_layer<ntag32, SUBNET>;
// head tags
template <typename SUBNET> using htag8 = add_tag_layer<7008, SUBNET>;
template <typename SUBNET> using htag16 = add_tag_layer<7016, SUBNET>;
template <typename SUBNET> using htag32 = add_tag_layer<7032, SUBNET>;
template <typename SUBNET> using hskip8 = add_skip_layer<htag8, SUBNET>;
template <typename SUBNET> using hskip16 = add_skip_layer<htag16, SUBNET>;
// yolo tags
template <typename SUBNET> using ytag8 = add_tag_layer<4008, SUBNET>;
template <typename SUBNET> using ytag16 = add_tag_layer<4016, SUBNET>;
template <typename SUBNET> using ytag32 = add_tag_layer<4032, SUBNET>;
template <template <typename> class ACT, template <typename> class BN>
struct def
{
template <long nf, long ks, int s, typename SUBNET>
using conblock = ACT<BN<add_layer<con_<nf, ks, ks, s, s, ks / 2, ks / 2>, SUBNET>>>;
template <long nf, typename SUBNET>
using residual = add_prev1<conblock<nf, 3, 1, conblock<nf / 2, 1, 1, tag1<SUBNET>>>>;
template <long nf, long factor, typename SUBNET>
using conblock5 = conblock<nf, 1, 1,
conblock<nf * factor, 3, 1,
conblock<nf, 1, 1,
conblock<nf * factor, 3, 1,
conblock<nf, 1, 1, SUBNET>>>>>;
template <typename SUBNET> using res_64 = residual<64, SUBNET>;
template <typename SUBNET> using res_128 = residual<128, SUBNET>;
template <typename SUBNET> using res_256 = residual<256, SUBNET>;
template <typename SUBNET> using res_512 = residual<512, SUBNET>;
template <typename SUBNET> using res_1024 = residual<1024, SUBNET>;
template <typename INPUT>
using backbone53 = repeat<4, res_1024, conblock<1024, 3, 2,
btag16<repeat<8, res_512, conblock<512, 3, 2,
btag8<repeat<8, res_256, conblock<256, 3, 2,
repeat<2, res_128, conblock<128, 3, 2,
res_64< conblock<64, 3, 2,
conblock<32, 3, 1,
INPUT>>>>>>>>>>>>>;
// This is the layer that will be passed to the loss layer to get the detections from the network.
// The main thing to pay attention to when defining the YOLO output layer is that it should be
// a tag layer, followed by a sigmoid layer and a 1x1 convolution. The tag layer should be unique
// in the whole network definition, as the loss layer will use it to get the outputs. The number of
// filters in the convolutional layer should be (1 + 4 + num_classes) * num_anchors at that output.
// The 1 corresponds to the objectness in the loss layer and the 4 to the bounding box coordinates.
template <long num_classes, long nf, template <typename> class YTAG, template <typename> class NTAG, typename SUBNET>
using yolo = YTAG<sig<con<3 * (num_classes + 5), 1, 1, 1, 1,
conblock<nf, 3, 1,
NTAG<conblock5<nf / 2, 2,
SUBNET>>>>>>;
template <long num_classes>
using yolov3 = yolo<num_classes, 256, ytag8, ntag8,
concat2<htag8, btag8,
htag8<upsample<2, conblock<128, 1, 1,
nskip16<
yolo<num_classes, 512, ytag16, ntag16,
concat2<htag16, btag16,
htag16<upsample<2, conblock<256, 1, 1,
nskip32<
yolo<num_classes, 1024, ytag32, ntag32,
backbone53<input_rgb_image>>>>>>>>>>>>>>;
};
using yolov3_train_type = loss_yolo<ytag8, ytag16, ytag32, def<leaky_relu, bn_con>::yolov3<80>>;
using yolov3_infer_type = loss_yolo<ytag8, ytag16, ytag32, def<leaky_relu, affine>::yolov3<80>>;
void setup_detector(yolov3_train_type& net, const yolo_options& options)
{
// remove bias from bn inputs
disable_duplicative_biases(net);
// setup leaky relus
visit_computational_layers(net, [](leaky_relu_& l) { l = leaky_relu_(0.1); });
// enlarge the batch normalization stats window
set_all_bn_running_stats_window_sizes(net, 1000);
// set the number of filters for detection layers (they are located after the tag and sig layers)
const long nfo1 = options.anchors.at(tag_id<ytag8>::id).size() * (options.labels.size() + 5);
const long nfo2 = options.anchors.at(tag_id<ytag16>::id).size() * (options.labels.size() + 5);
const long nfo3 = options.anchors.at(tag_id<ytag32>::id).size() * (options.labels.size() + 5);
layer<ytag8, 2>(net).layer_details().set_num_filters(nfo1);
layer<ytag16, 2>(net).layer_details().set_num_filters(nfo2);
layer<ytag32, 2>(net).layer_details().set_num_filters(nfo3);
}
}
// In this example, YOLO expects square images, and we choose to transform them by letterboxing them.
rectangle_transform preprocess_image(const matrix<rgb_pixel>& image, matrix<rgb_pixel>& output)
2021-07-30 08:05:54 +08:00
{
return rectangle_transform(inv(letterbox_image(image, output)));
2021-07-30 08:05:54 +08:00
}
// YOLO outputs the bounding boxes in the coordinate system of the input (letterboxed) image, so we need to convert them
// back to the original image.
void postprocess_detections(const rectangle_transform& tform, std::vector<yolo_rect>& detections)
{
for (auto& d : detections)
d.rect = tform(d.rect);
}
int main(const int argc, const char** argv)
try
{
command_line_parser parser;
parser.add_option("size", "image size for training (default: 416)", 1);
parser.add_option("learning-rate", "initial learning rate (default: 0.001)", 1);
parser.add_option("batch-size", "mini batch size (default: 8)", 1);
parser.add_option("burnin", "learning rate burnin steps (default: 1000)", 1);
parser.add_option("patience", "number of steps without progress (default: 10000)", 1);
parser.add_option("workers", "number of worker threads to load data (default: 4)", 1);
parser.add_option("gpus", "number of GPUs to run the training on (default: 1)", 1);
parser.add_option("test", "test the detector with a threshold (default: 0.01)", 1);
parser.add_option("visualize", "visualize data augmentation instead of training");
parser.add_option("map", "compute the mean average precision");
parser.add_option("anchors", "Do nothing but compute <arg1> anchor boxes using K-Means and print their shapes.", 1);
parser.set_group_name("Help Options");
parser.add_option("h", "alias of --help");
parser.add_option("help", "display this message and exit");
parser.parse(argc, argv);
if (parser.number_of_arguments() == 0 || parser.option("h") || parser.option("help"))
{
parser.print_options();
cout << "Give the path to a folder containing the training.xml file." << endl;
return 0;
}
const double learning_rate = get_option(parser, "learning-rate", 0.001);
const size_t patience = get_option(parser, "patience", 10000);
const size_t batch_size = get_option(parser, "batch-size", 8);
const size_t burnin = get_option(parser, "burnin", 1000);
const size_t image_size = get_option(parser, "size", 416);
const size_t num_workers = get_option(parser, "workers", 4);
const size_t num_gpus = get_option(parser, "gpus", 1);
const string data_directory = parser[0];
const string sync_file_name = "yolov3_sync";
image_dataset_metadata::dataset dataset;
image_dataset_metadata::load_image_dataset_metadata(dataset, data_directory + "/training.xml");
cout << "# images: " << dataset.images.size() << endl;
std::map<string, size_t> labels;
size_t num_objects = 0;
for (const auto& im : dataset.images)
{
for (const auto& b : im.boxes)
{
labels[b.label]++;
++num_objects;
}
}
cout << "# labels: " << labels.size() << endl;
yolo_options options;
color_mapper string_to_color;
for (const auto& label : labels)
{
cout << " - " << label.first << ": " << label.second;
cout << " (" << (100.0*label.second)/num_objects << "%)\n";
options.labels.push_back(label.first);
string_to_color(label.first);
}
// If the default anchor boxes don't fit your data well you should recompute them.
// Here's a simple way to do it using K-Means clustering. Note that the approach
// shown below is suboptimal, since it doesn't group the bounding boxes by size.
// Grouping the bounding boxes by size and computing the K-Means on each group
// would make more sense, since each stride of the network is meant to output
// boxes at a particular size, but that is very specific to the network architecture
// and the dataset itself.
if (parser.option("anchors"))
{
const auto num_clusers = std::stoul(parser.option("anchors").argument());
std::vector<dpoint> samples;
// First we need to rescale the bounding boxes to match the image size at training time.
for (const auto& image_info : dataset.images)
{
const auto scale = image_size / std::max<double>(image_info.width, image_info.height);
for (const auto& box : image_info.boxes)
{
dpoint sample(box.rect.width(), box.rect.height());
samples.push_back(sample*scale);
}
}
// Now we can compute K-Means clustering
randomize_samples(samples);
cout << "Computing anchors for " << samples.size() << " samples" << endl;
std::vector<dpoint> anchors;
pick_initial_centers(num_clusers, anchors, samples);
find_clusters_using_kmeans(samples, anchors);
std::sort(anchors.begin(), anchors.end(), [](const dpoint& a, const dpoint& b){ return prod(a) < prod(b); });
for (const dpoint& c : anchors)
cout << round(c(0)) << 'x' << round(c(1)) << endl;
// And check the average IoU of the newly computed anchor boxes and the training samples.
double average_iou = 0;
for (const dpoint& s : samples)
{
drectangle sample = centered_drect(dpoint(0, 0), s.x(), s.y());
double best_iou = 0;
for (const dpoint& a : anchors)
{
drectangle anchor = centered_drect(dpoint(0, 0), a.x(), a.y());
best_iou = std::max(best_iou, box_intersection_over_union(sample, anchor));
}
average_iou += best_iou;
}
cout << "Average IoU: " << average_iou / samples.size() << endl;
return EXIT_SUCCESS;
}
// When computing the objectness loss in YOLO, predictions that do not have an IoU
// with any ground truth box of at least options.iou_ignore_threshold, will be
// treated as not capable of detecting an object, an therefore incur loss.
// Similarly, predictions above this threshold are considered correct predictions
// by the loss. Typical settings for this threshold are in the range 0.5 to 0.7.
options.iou_ignore_threshold = 0.7;
// By setting this to a value < 1, we are telling the model to update all the predictions
// as long as the anchor box has an IoU > 0.2 with a ground truth.
options.iou_anchor_threshold = 0.2;
// These are the anchors computed on COCO dataset, presented in the YOLOv3 paper.
options.add_anchors<darknet::ytag8>({{10, 13}, {16, 30}, {33, 23}});
options.add_anchors<darknet::ytag16>({{30, 61}, {62, 45}, {59, 119}});
options.add_anchors<darknet::ytag32>({{116, 90}, {156, 198}, {373, 326}});
darknet::yolov3_train_type net(options);
darknet::setup_detector(net, options);
// The training process can be unstable at the beginning. For this reason, we exponentially
// increase the learning rate during the first burnin steps.
const matrix<double> learning_rate_schedule = learning_rate * pow(linspace(1e-12, 1, burnin), 4);
// In case we have several GPUs, we can tell the dnn_trainer to make use of them.
std::vector<int> gpus(num_gpus);
iota(gpus.begin(), gpus.end(), 0);
// We initialize the trainer here, as it will be used in several contexts, depending on the
// arguments passed the the program.
dnn_trainer<darknet::yolov3_train_type> trainer(net, sgd(0.0005, 0.9), gpus);
trainer.be_verbose();
trainer.set_mini_batch_size(batch_size);
trainer.set_learning_rate_schedule(learning_rate_schedule);
trainer.set_synchronization_file(sync_file_name, chrono::minutes(15));
cout << trainer;
// If the training has started and a synchronization file has already been saved to disk,
// we can re-run this program with the --test option and a confidence threshold to see
// how the training is going.
if (parser.option("test"))
{
if (!file_exists(sync_file_name))
{
cout << "Could not find file " << sync_file_name << endl;
return EXIT_FAILURE;
}
const double threshold = get_option(parser, "test", 0.01);
image_window win;
matrix<rgb_pixel> image, resized(image_size, image_size);
2021-07-30 08:05:54 +08:00
for (const auto& im : dataset.images)
{
win.clear_overlay();
load_image(image, data_directory + "/" + im.filename);
win.set_title(im.filename);
win.set_image(image);
const auto tform = preprocess_image(image, resized);
2021-07-30 08:05:54 +08:00
auto detections = net.process(resized, threshold);
postprocess_detections(tform, detections);
cout << "# detections: " << detections.size() << endl;
for (const auto& det : detections)
{
win.add_overlay(det.rect, string_to_color(det.label), det.label);
cout << det.label << ": " << det.rect << " " << det.detection_confidence << endl;
}
cin.get();
}
return EXIT_SUCCESS;
}
// If the training has started and a synchronization file has already been saved to disk,
// we can re-run this program with the --map option to compute the mean average precision
// on the test set.
if (parser.option("map"))
{
image_dataset_metadata::dataset dataset;
image_dataset_metadata::load_image_dataset_metadata(dataset, data_directory + "/testing.xml");
if (!file_exists(sync_file_name))
{
cout << "Could not find file " << sync_file_name << endl;
return EXIT_FAILURE;
}
matrix<rgb_pixel> image, resized(image_size, image_size);
2021-07-30 08:05:54 +08:00
std::map<std::string, std::vector<std::pair<double, bool>>> hits;
std::map<std::string, unsigned long> missing;
for (const auto& label : options.labels)
{
hits[label] = std::vector<std::pair<double, bool>>();
missing[label] = 0;
}
cout << "computing mean average precision for " << dataset.images.size() << " images..." << endl;
for (size_t i = 0; i < dataset.images.size(); ++i)
{
const auto& im = dataset.images[i];
load_image(image, data_directory + "/" + im.filename);
const auto tform = preprocess_image(image, resized);
2021-07-30 08:05:54 +08:00
auto dets = net.process(resized, 0.005);
postprocess_detections(tform, dets);
std::vector<bool> used(dets.size(), false);
// true positives: truths matched by detections
for (size_t t = 0; t < im.boxes.size(); ++t)
{
bool found_match = false;
for (size_t d = 0; d < dets.size(); ++d)
{
if (used[d])
continue;
if (im.boxes[t].label == dets[d].label &&
box_intersection_over_union(drectangle(im.boxes[t].rect), dets[d].rect) > 0.5)
{
used[d] = true;
found_match = true;
hits.at(dets[d].label).emplace_back(dets[d].detection_confidence, true);
break;
}
}
// false negatives: truths not matched
if (!found_match)
missing.at(im.boxes[t].label)++;
}
// false positives: detections not matched
for (size_t d = 0; d < dets.size(); ++d)
{
if (!used[d])
hits.at(dets[d].label).emplace_back(dets[d].detection_confidence, false);
}
cout << "progress: " << i << '/' << dataset.images.size() << "\t\t\t\r" << flush;
}
double map = 0;
for (auto& item : hits)
{
std::sort(item.second.rbegin(), item.second.rend());
const double ap = average_precision(item.second, missing[item.first]);
cout << rpad(item.first + ": ", 16, " ") << ap * 100 << '%' << endl;
map += ap;
}
cout << rpad(string("mAP: "), 16, " ") << map / hits.size() * 100 << '%' << endl;
return EXIT_SUCCESS;
}
Add support for fused convolutions (#2294) * add helper methods to implement fused convolutions * fix grammar * add method to disable affine layer and updated serialization * add documentation for .disable() * add fuse_convolutions visitor and documentation * update docs: net is not constant * fix xml formatting and use std::boolalpha * fix warning and updated net requirement for visitor * fix segfault in fuse_convolutions visitor * copy unconditionally * make the visitor class a friend of the con_ class * setup the biases alias tensor after enabling bias * simplify visitor a bit * fix comment * setup the biases size, somehow this got lost * copy the parameters before resizing * remove enable_bias() method, since the visitor is now a friend * Revert "remove enable_bias() method, since the visitor is now a friend" This reverts commit 35b92b16316f19a7f1f1b1313c9ab874f4d6199b. * update the visitor to remove the friend requirement * improve behavior of enable_bias * better describe the behavior of enable_bias * wip: use cudnncudnnConvolutionBiasActivationForward when activation has bias * wip: fix cpu compilation * WIP: not working fused ReLU * WIP: forgot do disable ReLU in visitor (does not change the fact that it does not work) * WIP: more general set of 4d tensor (still not working) * fused convolutions seem to be working now, more testing needed * move visitor to the bottom of the file * fix CPU-side and code clean up * Do not try to fuse the activation layers Fusing the activation layers in one cuDNN call is only supported when using the cuDNN ones (ReLU, Sigmoid, TanH...) which might lead to suprising behavior. So, let's just fuse the batch norm and the convolution into one cuDNN call using the IDENTITY activation function. * Set the correct forward algorithm for the identity activation Ref: https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBiasActivationForward * move the affine alias template to its original position * wip * remove unused param in relu and simplify example (I will delete it before merge) * simplify conv bias logic and fix deserialization issue * fix enabling bias on convolutions * remove test example * fix typo * update documentation * update documentation * remove ccache leftovers from CMakeLists.txt * Re-add new line * fix enable/disable bias on unallocated networks * update comment to mention cudnnConvolutionBiasActivationForward * fix typo Co-authored-by: Davis E. King <davis@dlib.net> * Apply documentation suggestions from code review Co-authored-by: Davis E. King <davis@dlib.net> * update affine docs to talk in terms of gamma and beta * simplify tensor_conv interface * fix tensor_conv operator() with biases * add fuse_layers test * add an example on how to use the fuse_layers function * fix typo Co-authored-by: Davis E. King <davis@dlib.net>
2021-10-11 22:48:56 +08:00
// Create some data loaders which will load the data, and perform some data augmentation.
2021-07-30 08:05:54 +08:00
dlib::pipe<std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>>> train_data(1000);
const auto loader = [&dataset, &data_directory, &train_data, &image_size](time_t seed)
{
dlib::rand rnd(time(nullptr) + seed);
matrix<rgb_pixel> image, rotated;
std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp;
random_cropper cropper;
cropper.set_seed(time(nullptr) + seed);
cropper.set_chip_dims(image_size, image_size);
cropper.set_max_object_size(0.9);
cropper.set_min_object_size(10, 10);
cropper.set_max_rotation_degrees(10);
cropper.set_translate_amount(0.5);
cropper.set_randomly_flip(true);
cropper.set_background_crops_fraction(0);
cropper.set_min_object_coverage(0.8);
while (train_data.is_enabled())
{
const auto idx = rnd.get_random_32bit_number() % dataset.images.size();
load_image(image, data_directory + "/" + dataset.images[idx].filename);
for (const auto& box : dataset.images[idx].boxes)
temp.second.emplace_back(box.rect, 1, box.label);
// We alternate between augmenting the full image and random cropping
if (rnd.get_random_double() > 0.5)
{
rectangle_transform tform = rotate_image(
image,
rotated,
rnd.get_double_in_range(-5 * pi / 180, 5 * pi / 180),
interpolate_bilinear());
for (auto& box : temp.second)
box.rect = tform(box.rect);
temp.first.set_size(image_size, image_size);
tform = letterbox_image(rotated, temp.first);
2021-07-30 08:05:54 +08:00
for (auto& box : temp.second)
box.rect = tform(box.rect);
if (rnd.get_random_double() > 0.5)
{
tform = flip_image_left_right(temp.first);
for (auto& box : temp.second)
box.rect = tform(box.rect);
}
}
else
{
std::vector<yolo_rect> boxes = temp.second;
cropper(image, boxes, temp.first, temp.second);
}
disturb_colors(temp.first, rnd);
train_data.enqueue(temp);
}
};
std::vector<thread> data_loaders;
for (size_t i = 0; i < num_workers; ++i)
data_loaders.emplace_back([loader, i]() { loader(i + 1); });
// It is always a good idea to visualize the training samples. By passing the --visualize
// flag, we can see the training samples that will be fed to the dnn_trainer.
if (parser.option("visualize"))
{
image_window win;
while (true)
{
std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp;
train_data.dequeue(temp);
win.clear_overlay();
win.set_image(temp.first);
for (const auto& r : temp.second)
{
auto color = string_to_color(r.label);
// make semi-transparent and cross-out the ignored boxes
if (r.ignore)
{
color.alpha = 128;
win.add_overlay(r.rect.tl_corner(), r.rect.br_corner(), color);
win.add_overlay(r.rect.tr_corner(), r.rect.bl_corner(), color);
}
win.add_overlay(r.rect, color, r.label);
}
cout << "Press enter to visualize the next training sample.";
cin.get();
}
}
std::vector<matrix<rgb_pixel>> images;
std::vector<std::vector<yolo_rect>> bboxes;
// The main training loop, that we will reuse for the warmup and the rest of the training.
const auto train = [&images, &bboxes, &train_data, &trainer]()
{
images.clear();
bboxes.clear();
pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp;
while (images.size() < trainer.get_mini_batch_size())
{
train_data.dequeue(temp);
images.push_back(move(temp.first));
bboxes.push_back(move(temp.second));
}
trainer.train_one_step(images, bboxes);
};
cout << "training started with " << burnin << " burn-in steps" << endl;
while (trainer.get_train_one_step_calls() < burnin)
train();
cout << "burn-in finished" << endl;
trainer.get_net();
trainer.set_learning_rate(learning_rate);
trainer.set_min_learning_rate(learning_rate * 1e-3);
trainer.set_learning_rate_shrink_factor(0.1);
trainer.set_iterations_without_progress_threshold(patience);
cout << trainer << endl;
while (trainer.get_learning_rate() >= trainer.get_min_learning_rate())
train();
cout << "training done" << endl;
trainer.get_net();
train_data.disable();
for (auto& worker : data_loaders)
worker.join();
Add support for fused convolutions (#2294) * add helper methods to implement fused convolutions * fix grammar * add method to disable affine layer and updated serialization * add documentation for .disable() * add fuse_convolutions visitor and documentation * update docs: net is not constant * fix xml formatting and use std::boolalpha * fix warning and updated net requirement for visitor * fix segfault in fuse_convolutions visitor * copy unconditionally * make the visitor class a friend of the con_ class * setup the biases alias tensor after enabling bias * simplify visitor a bit * fix comment * setup the biases size, somehow this got lost * copy the parameters before resizing * remove enable_bias() method, since the visitor is now a friend * Revert "remove enable_bias() method, since the visitor is now a friend" This reverts commit 35b92b16316f19a7f1f1b1313c9ab874f4d6199b. * update the visitor to remove the friend requirement * improve behavior of enable_bias * better describe the behavior of enable_bias * wip: use cudnncudnnConvolutionBiasActivationForward when activation has bias * wip: fix cpu compilation * WIP: not working fused ReLU * WIP: forgot do disable ReLU in visitor (does not change the fact that it does not work) * WIP: more general set of 4d tensor (still not working) * fused convolutions seem to be working now, more testing needed * move visitor to the bottom of the file * fix CPU-side and code clean up * Do not try to fuse the activation layers Fusing the activation layers in one cuDNN call is only supported when using the cuDNN ones (ReLU, Sigmoid, TanH...) which might lead to suprising behavior. So, let's just fuse the batch norm and the convolution into one cuDNN call using the IDENTITY activation function. * Set the correct forward algorithm for the identity activation Ref: https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBiasActivationForward * move the affine alias template to its original position * wip * remove unused param in relu and simplify example (I will delete it before merge) * simplify conv bias logic and fix deserialization issue * fix enabling bias on convolutions * remove test example * fix typo * update documentation * update documentation * remove ccache leftovers from CMakeLists.txt * Re-add new line * fix enable/disable bias on unallocated networks * update comment to mention cudnnConvolutionBiasActivationForward * fix typo Co-authored-by: Davis E. King <davis@dlib.net> * Apply documentation suggestions from code review Co-authored-by: Davis E. King <davis@dlib.net> * update affine docs to talk in terms of gamma and beta * simplify tensor_conv interface * fix tensor_conv operator() with biases * add fuse_layers test * add an example on how to use the fuse_layers function * fix typo Co-authored-by: Davis E. King <davis@dlib.net>
2021-10-11 22:48:56 +08:00
// Before saving the network, we can assign it to the "infer" version, so that it won't
// perform batch normalization with batch sizes larger than one, as usual. Moreover,
// we can also fuse the batch normalization (affine) layers into the convolutional
// layers, so that the network can run a bit faster. Notice that, after fusing the
// layers, the network can no longer be used for training, so you should save the
// yolov3_train_type network if you plan to further train or finetune the network.
darknet::yolov3_infer_type inet(net);
fuse_layers(inet);
serialize("yolov3.dnn") << inet;
2021-07-30 08:05:54 +08:00
return EXIT_SUCCESS;
}
catch (const std::exception& e)
{
cout << e.what() << endl;
return EXIT_FAILURE;
}