dlib/tools/convert_dlib_nets_to_caffe/main.cpp

521 lines
19 KiB
C++
Raw Normal View History

#include <dlib/xml_parser.h>
#include <dlib/matrix.h>
#include <fstream>
#include <vector>
#include <stack>
#include <set>
#include <dlib/string.h>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
// Only these computational layers have parameters
const std::set<string> comp_tags_with_params = {"fc", "fc_no_bias", "con", "affine_con", "affine_fc", "affine", "prelu"};
struct layer
{
string type; // comp, loss, or input
int idx;
string detail_name; // The name of the tag inside the layer tag. e.g. fc, con, max_pool, input_rgb_image.
std::map<string,double> attributes;
matrix<double> params;
long tag_id = -1; // If this isn't -1 then it means this layer was tagged, e.g. wrapped with tag2<> giving tag_id==2
long skip_id = -1; // If this isn't -1 then it means this layer draws its inputs from
// the most recent layer with tag_id==skip_id rather than its immediate predecessor.
double attribute (const string& key) const
{
auto i = attributes.find(key);
if (i != attributes.end())
return i->second;
else
throw dlib::error("Layer doesn't have the requested attribute '" + key + "'.");
}
string caffe_layer_name() const
{
if (type == "input")
return "data";
else
return detail_name+to_string(idx);
}
};
// ----------------------------------------------------------------------------------------
std::vector<layer> parse_dlib_xml(
const string& xml_filename
);
// ----------------------------------------------------------------------------------------
template <typename iterator>
string find_layer_caffe_name (
iterator i,
long tag_id
)
/*!
requires
- i is an iterator pointing to a layer in the list of layers produced by parse_dlib_xml().
- i is not an input layer.
ensures
- if (tag_id == -1) then
- returns the caffe string name for the previous layer to layer i.
- else
- returns the caffe string name for the previous layer to layer i with the given tag_id.
!*/
{
if (tag_id == -1)
{
return (i-1)->caffe_layer_name();
}
else
{
while(true)
{
i--;
// if we hit the end of the network before we found what we were looking for
if (i->tag_id == tag_id)
return i->caffe_layer_name();
if (i->type == "input")
throw dlib::error("Network definition is bad, a layer wanted to skip back to a non-existing layer.");
}
}
}
template <typename iterator>
string find_input_layer_caffe_name (iterator i) { return find_layer_caffe_name(i, i->skip_id); }
// ----------------------------------------------------------------------------------------
template <typename EXP>
void print_as_np_array(std::ostream& out, const matrix_exp<EXP>& m)
{
out << "np.array([";
for (auto x : m)
out << x << ",";
out << "], dtype='float32')";
}
// ----------------------------------------------------------------------------------------
void convert_dlib_xml_to_cafffe_python_code(
const string& xml_filename
)
{
2017-05-08 03:49:19 +08:00
const string out_filename = left_substr(xml_filename,".") + "_dlib_to_caffe_model.py";
cout << "Writing model to " << out_filename << endl;
ofstream fout(out_filename);
fout.precision(9);
const auto layers = parse_dlib_xml(xml_filename);
2017-05-08 03:49:19 +08:00
fout << "import caffe " << endl;
fout << "from caffe import layers as L, params as P" << endl;
fout << "import numpy as np" << endl;
// dlib nets don't commit to a batch size, so just use 1 as the default
2017-05-08 03:49:19 +08:00
fout << "\n# Input tensor dimensions" << endl;
fout << "batch_size = 1;" << endl;
if (layers.back().detail_name == "input_rgb_image")
{
2017-05-08 03:49:19 +08:00
fout << "input_nr = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default." << endl;
fout << "input_nc = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default." << endl;
fout << "input_k = 3;" << endl;
}
else if (layers.back().detail_name == "input_rgb_image_sized")
{
2017-05-08 03:49:19 +08:00
fout << "input_nr = " << layers.back().attribute("nr") << ";" << endl;
fout << "input_nc = " << layers.back().attribute("nc") << ";" << endl;
fout << "input_k = 3;" << endl;
}
else if (layers.back().detail_name == "input")
{
2017-05-08 03:49:19 +08:00
fout << "input_nr = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default." << endl;
fout << "input_nc = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default." << endl;
fout << "input_k = 1;" << endl;
}
else
{
throw dlib::error("No known transformation from dlib's " + layers.back().detail_name + " layer to caffe.");
}
2017-05-08 03:49:19 +08:00
fout << endl;
2017-05-08 03:49:19 +08:00
fout << "def make_netspec():" << endl;
fout << " # For reference, the only \"documentation\" about caffe layer parameters seems to be this page:\n";
fout << " # https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto\n" << endl;
fout << " n = caffe.NetSpec(); " << endl;
fout << " n.data,n.label = L.MemoryData(batch_size=batch_size, channels=input_k, height=input_nr, width=input_nc, ntop=2)" << endl;
// iterate the layers starting with the input layer
for (auto i = layers.rbegin(); i != layers.rend(); ++i)
{
// skip input and loss layers
if (i->type == "loss" || i->type == "input")
continue;
if (i->detail_name == "con")
{
2017-05-08 03:49:19 +08:00
fout << " n." << i->caffe_layer_name() << " = L.Convolution(n." << find_input_layer_caffe_name(i);
fout << ", num_output=" << i->attribute("num_filters");
fout << ", kernel_w=" << i->attribute("nc");
fout << ", kernel_h=" << i->attribute("nr");
fout << ", stride_w=" << i->attribute("stride_x");
fout << ", stride_h=" << i->attribute("stride_y");
fout << ", pad_w=" << i->attribute("padding_x");
fout << ", pad_h=" << i->attribute("padding_y");
fout << ");\n";
}
else if (i->detail_name == "relu")
{
2017-05-08 03:49:19 +08:00
fout << " n." << i->caffe_layer_name() << " = L.ReLU(n." << find_input_layer_caffe_name(i);
fout << ");\n";
}
else if (i->detail_name == "max_pool")
{
2017-05-08 03:49:19 +08:00
fout << " n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
fout << ", pool=P.Pooling.MAX";
if (i->attribute("nc")==0)
{
2017-05-08 03:49:19 +08:00
fout << ", global_pooling=True";
}
else
{
2017-05-08 03:49:19 +08:00
fout << ", kernel_w=" << i->attribute("nc");
fout << ", kernel_h=" << i->attribute("nr");
}
if (i->attribute("padding_x") != 0 || i->attribute("padding_y") != 0)
{
throw dlib::error("dlib and caffe implement pooling with non-zero padding differently, so you can't convert a "
"network with such pooling layers.");
}
2017-05-08 03:49:19 +08:00
fout << ", stride_w=" << i->attribute("stride_x");
fout << ", stride_h=" << i->attribute("stride_y");
fout << ", pad_w=" << i->attribute("padding_x");
fout << ", pad_h=" << i->attribute("padding_y");
fout << ");\n";
}
else if (i->detail_name == "avg_pool")
{
2017-05-08 03:49:19 +08:00
fout << " n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
fout << ", pool=P.Pooling.AVE";
if (i->attribute("nc")==0)
{
2017-05-08 03:49:19 +08:00
fout << ", global_pooling=True";
}
else
{
2017-05-08 03:49:19 +08:00
fout << ", kernel_w=" << i->attribute("nc");
fout << ", kernel_h=" << i->attribute("nr");
}
if (i->attribute("padding_x") != 0 || i->attribute("padding_y") != 0)
{
throw dlib::error("dlib and caffe implement pooling with non-zero padding differently, so you can't convert a "
"network with such pooling layers.");
}
2017-05-08 03:49:19 +08:00
fout << ", stride_w=" << i->attribute("stride_x");
fout << ", stride_h=" << i->attribute("stride_y");
fout << ", pad_w=" << i->attribute("padding_x");
fout << ", pad_h=" << i->attribute("padding_y");
fout << ");\n";
}
else if (i->detail_name == "fc")
{
2017-05-08 03:49:19 +08:00
fout << " n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
fout << ", num_output=" << i->attribute("num_outputs");
fout << ", bias_term=True";
fout << ");\n";
}
else if (i->detail_name == "fc_no_bias")
{
2017-05-08 03:49:19 +08:00
fout << " n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
fout << ", num_output=" << i->attribute("num_outputs");
fout << ", bias_term=False";
fout << ");\n";
}
else if (i->detail_name == "bn_con" || i->detail_name == "bn_fc")
{
throw dlib::error("Conversion from dlib's batch norm layers to caffe's isn't supported. Instead, "
"you should put your network into 'test mode' by switching batch norm layers to affine layers.");
}
else if (i->detail_name == "affine_con")
{
2017-05-08 03:49:19 +08:00
fout << " n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
fout << ", axis=1";
fout << ", bias_term=True";
fout << ");\n";
}
else if (i->detail_name == "affine_fc")
{
2017-05-08 03:49:19 +08:00
fout << " n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
fout << ", axis=3";
fout << ", bias_term=True";
fout << ");\n";
}
else if (i->detail_name == "add_prev")
{
2017-05-08 03:49:19 +08:00
fout << " n." << i->caffe_layer_name() << " = L.Eltwise(n." << find_input_layer_caffe_name(i);
fout << ", n." << find_layer_caffe_name(i, i->attribute("tag"));
fout << ", operation=P.Eltwise.SUM";
fout << ");\n";
}
else
{
throw dlib::error("No known transformation from dlib's " + i->detail_name + " layer to caffe.");
}
}
2017-05-08 03:49:19 +08:00
fout << " return n.to_proto();\n\n" << endl;
// -------------------------
// -------------------------
2017-05-08 03:49:19 +08:00
fout << "def save_as_caffe_model(def_file, weights_file):\n";
fout << " with open(def_file, 'w') as f: f.write(str(make_netspec()));\n";
fout << " net = caffe.Net(def_file, caffe.TEST);\n";
fout << " set_network_weights(net);\n";
fout << " net.save(weights_file);\n\n";
// -------------------------
// -------------------------
2017-05-08 03:49:19 +08:00
fout << "def set_network_weights(net):\n";
fout << " # populate network parameters\n";
// iterate the layers starting with the input layer
for (auto i = layers.rbegin(); i != layers.rend(); ++i)
{
// skip input and loss layers
if (i->type == "loss" || i->type == "input")
continue;
if (i->detail_name == "con")
{
const long num_filters = i->attribute("num_filters");
matrix<double> weights = trans(rowm(i->params,range(0,i->params.size()-num_filters-1)));
matrix<double> biases = trans(rowm(i->params,range(i->params.size()-num_filters, i->params.size()-1)));
// main filter weights
2017-05-08 03:49:19 +08:00
fout << " p = "; print_as_np_array(fout,weights); fout << ";\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
// biases
2017-05-08 03:49:19 +08:00
fout << " p = "; print_as_np_array(fout,biases); fout << ";\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
}
else if (i->detail_name == "fc")
{
matrix<double> weights = trans(rowm(i->params, range(0,i->params.nr()-2)));
matrix<double> biases = rowm(i->params, i->params.nr()-1);
// main filter weights
2017-05-08 03:49:19 +08:00
fout << " p = "; print_as_np_array(fout,weights); fout << ";\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
// biases
2017-05-08 03:49:19 +08:00
fout << " p = "; print_as_np_array(fout,biases); fout << ";\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
}
else if (i->detail_name == "fc_no_bias")
{
matrix<double> weights = trans(i->params);
// main filter weights
2017-05-08 03:49:19 +08:00
fout << " p = "; print_as_np_array(fout,weights); fout << ";\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
}
else if (i->detail_name == "affine_con" || i->detail_name == "affine_fc")
{
const long dims = i->params.size()/2;
matrix<double> gamma = trans(rowm(i->params,range(0,dims-1)));
matrix<double> beta = trans(rowm(i->params,range(dims, 2*dims-1)));
// set gamma weights
2017-05-08 03:49:19 +08:00
fout << " p = "; print_as_np_array(fout,gamma); fout << ";\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
// set beta weights
2017-05-08 03:49:19 +08:00
fout << " p = "; print_as_np_array(fout,beta); fout << ";\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
}
}
}
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv) try
{
2017-05-08 03:49:19 +08:00
if (argc == 1)
{
cout << "Give this program an xml file generated by dlib::net_to_xml() and it will" << endl;
cout << "convert it into a python file that outputs a caffe model containing the dlib model." << endl;
return 0;
}
for (int i = 1; i < argc; ++i)
convert_dlib_xml_to_cafffe_python_code(argv[i]);
return 0;
}
catch(std::exception& e)
{
cout << "\n\n*************** ERROR CONVERTING TO CAFFE ***************\n" << e.what() << endl;
return 1;
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
class doc_handler : public document_handler
{
public:
std::vector<layer> layers;
bool seen_first_tag = false;
layer next_layer;
std::stack<string> current_tag;
long tag_id = -1;
virtual void start_document (
)
{
layers.clear();
seen_first_tag = false;
tag_id = -1;
}
virtual void end_document (
) { }
virtual void start_element (
const unsigned long line_number,
const std::string& name,
const dlib::attribute_list& atts
)
{
if (!seen_first_tag)
{
if (name != "net")
throw dlib::error("The top level XML tag must be a 'net' tag.");
seen_first_tag = true;
}
if (name == "layer")
{
next_layer = layer();
if (atts["type"] == "skip")
{
// Don't make a new layer, just apply the tag id to the previous layer
if (layers.size() == 0)
throw dlib::error("A skip layer was found as the first layer, but the first layer should be an input layer.");
layers.back().skip_id = sa = atts["id"];
// We intentionally leave next_layer empty so the end_element() callback
// don't add it as another layer when called.
}
else if (atts["type"] == "tag")
{
// Don't make a new layer, just remember the tag id so we can apply it on
// the next layer.
tag_id = sa = atts["id"];
// We intentionally leave next_layer empty so the end_element() callback
// don't add it as another layer when called.
}
else
{
next_layer.idx = sa = atts["idx"];
next_layer.type = atts["type"];
if (tag_id != -1)
{
next_layer.tag_id = tag_id;
tag_id = -1;
}
}
}
else if (current_tag.size() != 0 && current_tag.top() == "layer")
{
next_layer.detail_name = name;
// copy all the XML tag's attributes into the layer struct
atts.reset();
while (atts.move_next())
next_layer.attributes[atts.element().key()] = sa = atts.element().value();
}
current_tag.push(name);
}
virtual void end_element (
const unsigned long line_number,
const std::string& name
)
{
current_tag.pop();
if (name == "layer" && next_layer.type.size() != 0)
layers.push_back(next_layer);
}
virtual void characters (
const std::string& data
)
{
if (current_tag.size() == 0)
return;
if (comp_tags_with_params.count(current_tag.top()) != 0)
{
istringstream sin(data);
sin >> next_layer.params;
}
}
virtual void processing_instruction (
const unsigned long line_number,
const std::string& target,
const std::string& data
)
{
}
};
// ----------------------------------------------------------------------------------------
std::vector<layer> parse_dlib_xml(
const string& xml_filename
)
{
doc_handler dh;
parse_xml(xml_filename, dh);
if (dh.layers.size() == 0)
throw dlib::error("No layers found in XML file!");
if (dh.layers.back().type != "input")
throw dlib::error("The network in the XML file is missing an input layer!");
return dh.layers;
}
// ----------------------------------------------------------------------------------------