2011-11-03 10:40:18 +08:00
|
|
|
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
|
|
|
/*
|
|
|
|
|
|
|
|
This is an example illustrating the use of the support vector machine
|
|
|
|
utilities from the dlib C++ Library.
|
|
|
|
|
|
|
|
This example creates a simple set of data to train on and then shows
|
|
|
|
you how to use the cross validation and svm training functions
|
|
|
|
to find a good decision function that can classify examples in our
|
|
|
|
data set.
|
|
|
|
|
|
|
|
|
|
|
|
The data used in this example will be 2 dimensional data and will
|
|
|
|
come from a distribution where points with a distance less than 10
|
|
|
|
from the origin are labeled +1 and all other points are labeled
|
|
|
|
as -1.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include "dlib/svm_threaded.h"
|
|
|
|
#include "dlib/rand.h"
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace dlib;
|
|
|
|
|
|
|
|
|
|
|
|
const unsigned long num_label_states = 3; // the "hidden" states
|
|
|
|
const unsigned long num_sample_states = 3;
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
class feature_extractor
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
typedef unsigned long sample_type;
|
|
|
|
|
|
|
|
unsigned long num_features() const
|
|
|
|
{
|
|
|
|
return num_label_states*num_label_states + num_label_states*num_sample_states;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long order() const
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned long num_labels() const
|
|
|
|
{
|
|
|
|
return num_label_states;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename feature_setter, typename EXP>
|
|
|
|
void get_features (
|
|
|
|
feature_setter& set_feature,
|
|
|
|
const std::vector<sample_type>& x,
|
|
|
|
const matrix_exp<EXP>& y,
|
|
|
|
unsigned long position
|
|
|
|
) const
|
|
|
|
{
|
|
|
|
if (y.size() > 1)
|
|
|
|
set_feature(y(1)*num_label_states + y(0));
|
|
|
|
|
|
|
|
set_feature(num_label_states*num_label_states +
|
|
|
|
y(0)*num_sample_states + x[position]);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2011-11-04 06:56:03 +08:00
|
|
|
void serialize(const feature_extractor&, std::ostream&) {}
|
|
|
|
void deserialize(feature_extractor&, std::istream&) {}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
void make_dataset (
|
|
|
|
const matrix<double>& transition_probabilities,
|
2011-11-04 07:17:53 +08:00
|
|
|
const matrix<double>& emission_probabilities,
|
2011-11-04 06:56:03 +08:00
|
|
|
std::vector<std::vector<unsigned long> >& samples,
|
|
|
|
std::vector<std::vector<unsigned long> >& labels,
|
|
|
|
unsigned long dataset_size
|
|
|
|
);
|
|
|
|
/*!
|
|
|
|
requires
|
|
|
|
- transition_probabilities.nr() == transition_probabilities.nc()
|
|
|
|
- transition_probabilities.nr() == emission_probabilities.nr()
|
|
|
|
- The rows of transition_probabilities and emission_probabilities must sum to 1.
|
|
|
|
(i.e. sum_cols(transition_probabilities) and sum_cols(emission_probabilities)
|
|
|
|
must evaluate to vectors of all 1s.)
|
|
|
|
ensures
|
|
|
|
- This function randomly samples a bunch of sequences from the HMM defined by
|
|
|
|
transition_probabilities and emission_probabilities.
|
|
|
|
- The HMM is defined by:
|
2011-11-04 07:17:53 +08:00
|
|
|
- The probability of transitioning from hidden state H1 to H2
|
|
|
|
is given by transition_probabilities(H1,H2).
|
|
|
|
- The probability of a hidden state H producing an observed state
|
|
|
|
O is given by emission_probabilities(H,O).
|
2011-11-04 06:56:03 +08:00
|
|
|
- #samples.size() == labels.size() == dataset_size
|
|
|
|
- for all valid i:
|
|
|
|
- #labels[i] is a randomly sampled sequence of hidden states from the
|
|
|
|
given HMM. #samples[i] is its corresponding randomly sampled sequence
|
|
|
|
of observed states.
|
|
|
|
!*/
|
|
|
|
|
2011-11-03 10:40:18 +08:00
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
2011-11-04 06:56:03 +08:00
|
|
|
int main()
|
|
|
|
{
|
2011-11-04 07:17:53 +08:00
|
|
|
matrix<double> transition_probabilities(num_label_states, num_label_states);
|
|
|
|
transition_probabilities = 0.05, 0.90, 0.05,
|
|
|
|
0.05, 0.05, 0.90,
|
|
|
|
0.90, 0.05, 0.05;
|
2011-11-04 06:56:03 +08:00
|
|
|
|
|
|
|
// set this up so emission_probabilities(L,X) == The probability of a state with label L
|
|
|
|
// emitting an X.
|
|
|
|
matrix<double> emission_probabilities(num_label_states,num_sample_states);
|
|
|
|
emission_probabilities = 0.5, 0.5, 0.0,
|
|
|
|
0.0, 0.5, 0.5,
|
|
|
|
0.5, 0.0, 0.5;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<std::vector<unsigned long> > samples;
|
|
|
|
std::vector<std::vector<unsigned long> > labels;
|
2011-11-04 07:17:53 +08:00
|
|
|
make_dataset(transition_probabilities,emission_probabilities,
|
2011-11-04 06:56:03 +08:00
|
|
|
samples, labels, 1000);
|
|
|
|
|
|
|
|
cout << "samples.size(): "<< samples.size() << endl;
|
|
|
|
|
|
|
|
// print out some of the randomly sampled sequences
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
|
|
{
|
|
|
|
cout << "hidden states: " << trans(vector_to_matrix(labels[i]));
|
|
|
|
cout << "observed states: " << trans(vector_to_matrix(samples[i]));
|
|
|
|
cout << "******************************" << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
structural_sequence_labeling_trainer<feature_extractor> trainer;
|
|
|
|
trainer.set_c(4);
|
|
|
|
trainer.set_num_threads(4);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Learn to do sequence labeling from the dataset
|
|
|
|
sequence_labeler<feature_extractor> labeler = trainer.train(samples, labels);
|
2011-11-04 07:17:53 +08:00
|
|
|
|
|
|
|
std::vector<unsigned long> predicted_labels = labeler(samples[0]);
|
|
|
|
cout << "true hidden states: "<< trans(vector_to_matrix(labels[0]));
|
|
|
|
cout << "predicted hidden states: "<< trans(vector_to_matrix(predicted_labels));
|
|
|
|
|
|
|
|
|
2011-11-04 06:56:03 +08:00
|
|
|
|
|
|
|
|
|
|
|
// We can also do cross-validation
|
2011-11-04 07:17:53 +08:00
|
|
|
matrix<double> confusion_matrix;
|
2011-11-04 06:56:03 +08:00
|
|
|
confusion_matrix = cross_validate_sequence_labeler(trainer, samples, labels, 4);
|
|
|
|
cout << "\ncross-validation: " << endl;
|
|
|
|
cout << confusion_matrix;
|
|
|
|
cout << "label accuracy: "<< sum(diag(confusion_matrix))/sum(confusion_matrix) << endl;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
matrix<double,0,1> true_hmm_model_weights = log(join_cols(reshape_to_column_vector(transition_probabilities),
|
|
|
|
reshape_to_column_vector(emission_probabilities)));
|
|
|
|
|
|
|
|
sequence_labeler<feature_extractor> labeler_true(feature_extractor(), true_hmm_model_weights);
|
|
|
|
|
|
|
|
confusion_matrix = test_sequence_labeler(labeler_true, samples, labels);
|
|
|
|
cout << "\nTrue HMM model: " << endl;
|
|
|
|
cout << confusion_matrix;
|
|
|
|
cout << "label accuracy: "<< sum(diag(confusion_matrix))/sum(confusion_matrix) << endl;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Finally, the labeler can be serialized to disk just like most dlib objects.
|
|
|
|
ofstream fout("labeler.dat", ios::binary);
|
|
|
|
serialize(labeler, fout);
|
|
|
|
fout.close();
|
|
|
|
|
|
|
|
// recall from disk
|
|
|
|
ifstream fin("labeler.dat", ios::binary);
|
|
|
|
deserialize(labeler, fin);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
// Code for creating a bunch of random samples from our HMM.
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
// ----------------------------------------------------------------------------------------
|
2011-11-03 10:40:18 +08:00
|
|
|
|
|
|
|
void sample_hmm (
|
|
|
|
dlib::rand& rnd,
|
|
|
|
const matrix<double>& transition_probabilities,
|
|
|
|
const matrix<double>& emission_probabilities,
|
|
|
|
unsigned long previous_label,
|
|
|
|
unsigned long& next_label,
|
|
|
|
unsigned long& next_sample
|
|
|
|
)
|
2011-11-04 06:56:03 +08:00
|
|
|
/*!
|
|
|
|
requires
|
|
|
|
- previous_label < transition_probabilities.nr()
|
|
|
|
- transition_probabilities.nr() == transition_probabilities.nc()
|
|
|
|
- transition_probabilities.nr() == emission_probabilities.nr()
|
|
|
|
- The rows of transition_probabilities and emission_probabilities must sum to 1.
|
|
|
|
(i.e. sum_cols(transition_probabilities) and sum_cols(emission_probabilities)
|
|
|
|
must evaluate to vectors of all 1s.)
|
|
|
|
ensures
|
|
|
|
- This function randomly samples the HMM defined by transition_probabilities
|
|
|
|
and emission_probabilities assuming that the previous hidden state
|
|
|
|
was previous_label.
|
|
|
|
- The HMM is defined by:
|
|
|
|
- P(next_label |previous_label) == transition_probabilities(previous_label, next_label)
|
|
|
|
- P(next_sample|next_label) == emission_probabilities (next_label, next_sample)
|
|
|
|
- #next_label == the sampled value of the hidden state
|
|
|
|
- #next_sample == the sampled value of the observed state
|
|
|
|
!*/
|
2011-11-03 10:40:18 +08:00
|
|
|
{
|
2011-11-04 06:56:03 +08:00
|
|
|
// sample next_label
|
2011-11-03 10:40:18 +08:00
|
|
|
double p = rnd.get_random_double();
|
|
|
|
for (long c = 0; p >= 0 && c < transition_probabilities.nc(); ++c)
|
|
|
|
{
|
|
|
|
next_label = c;
|
|
|
|
p -= transition_probabilities(previous_label, c);
|
|
|
|
}
|
|
|
|
|
2011-11-04 06:56:03 +08:00
|
|
|
// now sample next_sample
|
2011-11-03 10:40:18 +08:00
|
|
|
p = rnd.get_random_double();
|
|
|
|
for (long c = 0; p >= 0 && c < emission_probabilities.nc(); ++c)
|
|
|
|
{
|
|
|
|
next_sample = c;
|
|
|
|
p -= emission_probabilities(next_label, c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
void make_dataset (
|
|
|
|
const matrix<double>& transition_probabilities,
|
2011-11-04 07:17:53 +08:00
|
|
|
const matrix<double>& emission_probabilities,
|
2011-11-03 10:40:18 +08:00
|
|
|
std::vector<std::vector<unsigned long> >& samples,
|
|
|
|
std::vector<std::vector<unsigned long> >& labels,
|
|
|
|
unsigned long dataset_size
|
|
|
|
)
|
|
|
|
{
|
|
|
|
samples.clear();
|
|
|
|
labels.clear();
|
|
|
|
|
|
|
|
dlib::rand rnd;
|
|
|
|
|
|
|
|
// now randomly sample some labeled sequences from our Hidden Markov Model
|
|
|
|
for (unsigned long iter = 0; iter < dataset_size; ++iter)
|
|
|
|
{
|
2011-11-04 06:56:03 +08:00
|
|
|
const unsigned long sequence_size = rnd.get_random_32bit_number()%20+3;
|
|
|
|
std::vector<unsigned long> sample(sequence_size);
|
|
|
|
std::vector<unsigned long> label(sequence_size);
|
2011-11-03 10:40:18 +08:00
|
|
|
|
|
|
|
unsigned long previous_label = rnd.get_random_32bit_number()%num_label_states;
|
|
|
|
for (unsigned long i = 0; i < sample.size(); ++i)
|
|
|
|
{
|
|
|
|
unsigned long next_label, next_sample;
|
|
|
|
sample_hmm(rnd, transition_probabilities, emission_probabilities,
|
|
|
|
previous_label, next_label, next_sample);
|
|
|
|
|
|
|
|
label[i] = next_label;
|
|
|
|
sample[i] = next_sample;
|
|
|
|
|
|
|
|
previous_label = next_label;
|
|
|
|
}
|
|
|
|
|
|
|
|
samples.push_back(sample);
|
|
|
|
labels.push_back(label);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
|